Featuring Variability Modeling: Categorizing Expressiveness in Variability Modeling

Christian Kröher
University of Hildesheim, Institute of Computer Science
Marienburger Platz 22, D-31141 Hildesheim, Germany
kroehrer@sse.uni-hildesheim.de
Contents

1. Introduction
 – Problem Statement
 – Contribution
 – Current Work and Open Questions

2. Categorization Approach
 – Scope
 – Categorization Schema

3. Discussion
Problem Statement

- Variability modeling is a core activity of software product line engineering
- Many different approaches to variability modeling have been proposed

P1: No detailed justification on why to use a certain modeling concept

P2: No guidelines on when to use what kind of modeling concept

P3: No overview on dependencies between expressiveness and analyzability
Contribution

- Systematic categorization of variability modeling concepts
 - Describing dependencies among concepts
 - Describing the partial order of concepts
 - Covering a range of concepts
 - Providing support for concept selection

➤ **Categorization of existing concepts on a meta-language level**
Featuring Variability Modeling: Categorizing Expressiveness in Variability Modeling

Current Work and Open Questions

1. Did we forget other important categories that make a difference?
2. Do more expressive categories exist?
3. How to categorize DSLs?

Expressiveness

Configuration References

Non-Boolean Variability Modeling

Cardinality-Based Variability Modeling

Basic (pure Boolean) Variability Modeling

Analyzability
Introduction | Categorization Approach | Discussion

Scope (1/2)

- We focus on …
 - Characterization of different categories of variability modeling concepts
 - Properties
 - Dependencies
 - Most basic variability modeling concepts
 - Expressiveness of variability modeling concepts
Scope (2/2)

• We exclude concepts, which are designed for …
 – realizing variability
 – mapping elements from configuration to implementation
 – supporting development in the large (modularization, composition, etc.)
• We exclude concepts, that …
 – are syntactic sugar
 – act as aliases for other concepts
 – can be expressed by combining multiple basic concepts
Featuring Variability Modeling: Categorizing Expressiveness in Variability Modeling

Categorization Schema – An Overview

<table>
<thead>
<tr>
<th>Categorization Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
</tbody>
</table>

- Expressiveness
- Configuration References
- Non-Boolean Variability Modeling
- Cardinality-Based Variability Modeling
- Basic (pure Boolean) Variability Modeling

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

modeling concepts
Expressiveness – Modeling Concepts

- **Purpose:** definition of the configuration space
- What type of configurable elements are available?
 - Pure Boolean elements
 - Non-Boolean elements, etc.
- What do these elements represent?
 - Single configuration options
 - Multiple selection, etc.
Expressiveness – Constraints

- **Purpose:**
 - Restriction of the configuration space
 - Guarantying the configuration of only valid product configurations
- **What type of operators are available?**
 - Boolean operators
 - Relational operators, etc.
- **What type of constraints can be defined?**
 - Constraints on configurable elements
 - Constraints on, e.g., cardinalities, etc.
Analyzability

- **Purpose**: model and configuration checking
- How complex are problems represented by a model of a specific category?
 - NP-complete
 - Undecidable, etc.
- What type of analysis operations are available?
 - Validity checking
 - Error detection, etc.
- Is tool-support available?
 - SAT-solvers
 - CSP-solvers, etc.
Did we forget other important categories that make a difference?

- For example:
 - Are configuration references really the next level of expressiveness?
 - Is there another category of concepts that is …
 - More expressive than non-Boolean variability modeling
 - Less expressive than configuration references
Do more expressive categories exist / How to categories DSLs?

- For example:
 - Configuration references + $?_1 = ?_2$
 - $?_1$ – What modeling concepts could be added / are still missing?
 - $?_2$ – What kind of category would this be?
 - Are DSLs another category of variability modeling concepts?
 - $?_2$ – Are DSLs more expressive than the categories presented?
 - $?_1$ – What modeling concepts do DSLs provide?
Current Work and Open Questions

1. Did we forget other important categories that make a difference?

2. Do more expressive categories exist?

3. How to categories DSLs?

<table>
<thead>
<tr>
<th></th>
<th>Expressiveness</th>
<th>Analyzability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modeling Concepts</td>
<td>Constraints</td>
</tr>
<tr>
<td></td>
<td>pure Boolean elements</td>
<td>Cardinalities</td>
</tr>
<tr>
<td>Basic Variability Modeling</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cardinality-based Variability Modeling</td>
<td>bounded</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>unbounded</td>
<td>x</td>
</tr>
<tr>
<td>Non-Boolean Variability Modeling</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Configuration References</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>