
Finding variability bugs in Linux

Iago Abal Rivas
IT Universitetet i København

Joint work with Andrzej Wąsowski and Claus Brabrand

FOSD Meeting 2014

1 / 28



Agenda

40 variability bugs in Linux: A Qualitative Study (10m)

Method
Example
Observations
Conclusion

Next step: Towards a feature-sensitive code scanner (5m)

2 / 28



Contribution

I Identification of 40 variability bugs in the Linux kernel.
I A database containing the results of our analysis.

(The current version is available at http://VBDb.itu.dk.)

I Self-contained simplified C99 versions of all bugs.
I An aggregated reflection over the collection of bugs.

A technical report is available online at
http://bit.ly/ITU-TR-2014-180

3 / 28

http://VBDb.itu.dk
http://bit.ly/ITU-TR-2014-180


Research questions

I Rq1: Are variability bugs limited to any particular type of
bugs, “error-prone” features, or specific location?

I Rq2: In what ways does variability affect software bugs?

4 / 28



Filter commits that look like variability-related

commit 6252547b8a7acced581b649af4ebf6d65f63a34b
Author: Russell King <rmk+kernel@arm.linux.org.uk>
Date: Tue Feb 7 09:47:21 2012 +0000

ARM: omap: fix broken twl-core dependencies and ifdefs

In commit aeb5032b3f, a dependency on IRQ_DOMAIN was added, which causes
regressions on previously working setups: a previously working non-DT
kernel configuration now loses its PMIC support. The lack of PMIC
support in turn causes the loss of other functionality the kernel had.

This dependency was added because the driver now registers its
interrupts with the IRQ domain code, presumably to prevent a build error.

The result is that OMAP3 oopses in the vp.c code (fixed by a previous
commit) due to the lack of PMIC support.

However, even with IRQ_DOMAIN enabled , the driver oopses:

Unable to handle kernel NULL pointer dereference at virtual address 00000000

5 / 28



Filter those that look like variability-related
diff --git a/drivers/mfd/Kconfig b/drivers/mfd/Kconfig
index cd13e9f..f147395 100644
--- a/drivers/mfd/Kconfig
+++ b/drivers/mfd/Kconfig
@@ -200,7 +200,7 @@ config MENELAUS

config TWL4030_CORE
bool "Texas Instruments TWL4030/TWL5030/TWL6030/TPS659x0 Support"

- depends on I2C=y && GENERIC_HARDIRQS && IRQ_DOMAIN
+ depends on I2C=y && GENERIC_HARDIRQS

help
Say yes here if you have TWL4030 / TWL6030 family chip on your board.
This core driver provides register access and IRQ handling

diff --git a/drivers/mfd/twl-core.c b/drivers/mfd/twl-core.c
index e04e04d..8ce3959 100644
--- a/drivers/mfd/twl-core.c
+++ b/drivers/mfd/twl-core.c
@@ -263,7 +263,9 @@ struct twl_client {

static struct twl_client twl_modules[TWL_NUM_SLAVES];

+ #ifdef CONFIG_IRQ_DOMAIN
static struct irq_domain domain;

+ #endif
6 / 28



Filter commits that look like fixing a bug
commit 6252547b8a7acced581b649af4ebf6d65f63a34b
Author: Russell King <rmk+kernel@arm.linux.org.uk>
Date: Tue Feb 7 09:47:21 2012 +0000

ARM: omap: fix broken twl-core dependencies and ifdefs

In commit aeb5032b3f, a dependency on IRQ_DOMAIN was added, which causes
regressions on previously working setups: a previously working non-DT
kernel configuration now loses its PMIC support. The lack of PMIC
support in turn causes the loss of other functionality the kernel had.

This dependency was added because the driver now registers its
interrupts with the IRQ domain code, presumably to prevent a build error .

The result is that OMAP3 oopses in the vp.c code ( fixed by a previous
commit) due to the lack of PMIC support.

However, even with IRQ_DOMAIN enabled, the driver oopses :

Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = c0004000
[00000000] *pgd=00000000
Internal error : Oops : 5 [#1] SMP

7 / 28



ARM: omap: fix broken twl-core dependencies and ifdefs

static int twl_probe()
{

int *ops = NULL;
#ifdef CONFIG_OF_IRQ

ops = &irq_domain_ops;
#endif

irq_domain_add(ops);
}

#ifdef IRQ_DOMAIN
void irq_domain_add(int *ops)
{

int irq = *ops;
}
#endif

8 / 28



ARM: omap: fix broken twl-core dependencies and ifdefs

static int twl_probe()
{

int *ops = NULL;
#ifdef CONFIG_OF_IRQ

ops = &irq_domain_ops;
#endif

irq_domain_add(ops);
}

#ifdef IRQ_DOMAIN
void irq_domain_add(int *ops)
{

int irq = *ops;
}
#endif

9 / 28



ARM: omap: fix broken twl-core dependencies and ifdefs

static int twl_probe()
{

int *ops = NULL;
#ifdef CONFIG_OF_IRQ

ops = &irq_domain_ops;
#endif

irq_domain_add(ops);
}

#ifdef IRQ_DOMAIN
void irq_domain_add(int *ops)
{

int irq = *ops;
}
#endif

10 / 28



type: Null pointer dereference

descr: Null pointer on !OF_IRQ gets dereferenced if IRQ_DOMAIN .

In TWL4030 driver, attempt to register an IRQ domain with
a NULL ops structure: ops is de-referenced when registering
an IRQ domain, but this field is only set when OF_IRQ .

config: TWL4030_CORE && !OF_IRQ

bugfix:

repo: git://git.kernel.org/pub/.../linux-stable.git

hash: 6252547b8a7acced581b649af4ebf6d65f63a34b

fix: model, mapping

trace: !!trace |
. dyn-call drivers/mfd/twl-core.c:1190:twl_probe()
. 1235: irq_domain_add(&domain);
.. call kernel/irq/irqdomain.c:20:irq_domain_add()
... call include/linux/irqdomain.h:74:irq_domain_to_irq()
... ERROR 77: if (d->ops->to_irq)

links: !!md |
* [I2C](http://cateee.net/lkddb/web-lkddb/I2C.html)
* [TWL4030](http://www.ti.com/general/docs/...)
* [IRQ domain](http://lxr.gwbnsh.net.cn/.../IRQ-domain.txt)

11 / 28



Observation (1)
Variability bugs are not limited to any particular type of
bugs.

15 memory errors CWE ID
4 null pointer dereference 476
3 buffer overflow 120
3 read out of bounds 125
2 insufficient memory -
1 memory leak 401
1 use after free 416
1 write on read only -

8 compiler warnings CWE ID
5 uninitialized variable 457
1 unused function (dead code) 561
1 unused variable 563
1 void pointer dereference -
7 type errors CWE ID
5 undefined symbol -
1 undeclared identifier -
1 wrong number of args to function -

7 assertion violations CWE ID
5 fatal assertion violation 617
2 non-fatal assertion violation 617

2 API violations CWE ID
1 Linux API contract violation -
1 double lock 764

1 arithmetic errors CWE ID
1 numeric truncation 197

12 / 28



Observation (2)

Variability bugs appear to not be restricted to specific
“error prone” features.

64BIT IP_SCTP SECURITY
ACPI_VIDEO JFFS2_FS_WBUF_VERIFY SHMEM
ACPI_WMI KGDB SLAB
ANDROID KPROBES SLOB
ARCH_OMAP2420 KTIME_SCALAR SMP
ARCH_OPAM3 LOCKDEP SND_FSI_AK4642
ARM_LPAE MACH_OMAP_H4 SND_FSI_DA7210
BACKLIGHT_CLASS_DEVICE MODULE_UNLOAD SSB_DRIVER_EXTIF
BCM47XX NETPOLL STUB_POULSBO
BDI_SWITCH NUMA SYSFS
BF60x OF_IRQ TCP_MD5SIG
BLK_CGROUP PARISC TMPFS
CRYPTO_BLKCIPHER PCI TRACE_IRQFLAGS
CRYPTO_TEST PM TRACING
DEVPTS_MULTIPLE_INSTANCES PPC64 TREE_RCU
DISCONTIGMEM PPC_256K_PAGES TWL4030_CORE
DRM_I915 PREEMPT UNIX98_PTYS
EP93XX_ETH PROC_PAGE_MONITOR VLAN_8021Q
EXTCON PROVE_LOCKING VORTEX
FORCE_MAX_ZONEORDER=11 QUOTA_DEBUG X86
HIGHMEM RCU_CPU_STALL_INFO X86_32
HOTPLUG RCU_FAST_NO_HZ XMON
I2C S390 ZONE_DMA

13 / 28



Observation (3)

Variability bugs are not confined to any specific location
(file or kernel subsystem)

drivers/

7.0M (59%)

arch/

2.0M (17%)

fs/

801k (7%)

sound/

595k (5%)

net/

583k (5%)

include/

372k (3%)

kernel/

139k (1%)

lib/

66k (.6%)

mm/

63k (.5%)

crypto/

62k (.5%)

security/

49k (.4%)

block/

21k (.2%)

14 / 28



Observation (4)

We have identified 29 bugs that involve non-locally
defined features; i.e., features that are “remotely” defined
in another subsystem than where the bug occurred.

E.g.
I 6252547b8a7 occurs in drivers/ but one of the interacting

features, IRQ_DOMAIN , is defined in kernel/

I 0dc77b6dabe, which occurs also in drivers/, is caused by an
improper use of the sysfs virtual filesystem API—feature SYSFS in
fs/.

15 / 28



Observation (4)

We have identified 29 bugs that involve non-locally
defined features; i.e., features that are “remotely” defined
in another subsystem than where the bug occurred.

E.g.
I 6252547b8a7 occurs in drivers/ but one of the interacting

features, IRQ_DOMAIN , is defined in kernel/

I 0dc77b6dabe, which occurs also in drivers/, is caused by an
improper use of the sysfs virtual filesystem API—feature SYSFS in
fs/.

15 / 28



Observation (5)

Variability can be implicit and even hidden in
(alternative) configuration-dependent macro, function, or
type definitions specified in (potentially different) header
files.

E.g.
I In 0988c4c7fb5, function vlan_hwaccel_do_receive just BUG()s

when VLAN_8021Q is not present.

I In 0f8f8094d28, kmalloc_caches length is
configuration-dependent, resulting in a read out of bounds in
PowerPC architectures.

16 / 28



Observation (5)

Variability can be implicit and even hidden in
(alternative) configuration-dependent macro, function, or
type definitions specified in (potentially different) header
files.

E.g.
I In 0988c4c7fb5, function vlan_hwaccel_do_receive just BUG()s

when VLAN_8021Q is not present.

I In 0f8f8094d28, kmalloc_caches length is
configuration-dependent, resulting in a read out of bounds in
PowerPC architectures.

16 / 28



Observation (6)

Variability bugs are fixed not only in the code; some are
fixed in the mapping, some are fixed in the model, and
some are fixed in a combination of these.

0

10

20

30

code
mapping
model

code
mapping
model

code
mapping
model

code
mapping
model

code
mapping
model

#bugs

17 / 28



Observation (7)

We have identified as many as 28 feature-interaction
bugs in the Linux kernel.

0

5

10

15

1-degree 2-degree 3-degree 4-degree 5-degree

#bugs

variability bugs
feature-interaction bugs

E.g.
I 51fd36f3fad fixes a bug in the Linux high-resolution timers

mechanism due to a numeric truncation error, that only happens in
32-bit architectures not supporting the KTIME_SCALAR feature.

18 / 28



Observation (7)

We have identified as many as 28 feature-interaction
bugs in the Linux kernel.

0

5

10

15

1-degree 2-degree 3-degree 4-degree 5-degree

#bugs

variability bugs
feature-interaction bugs

E.g.
I 51fd36f3fad fixes a bug in the Linux high-resolution timers

mechanism due to a numeric truncation error, that only happens in
32-bit architectures not supporting the KTIME_SCALAR feature.

18 / 28



Observation (8)

We have identified 12 bugs involving three or more
features.

0

5

10

15

1-degree 2-degree 3-degree 4-degree 5-degree

#bugs

variability bugs
feature-interaction bugs

E.g.
I 221ac329e93 is a 5-degree bug due to 32-bit PowerPC

architectures not disabling kernel memory write-protection when
KPROBES is enabled.

19 / 28



Observation (8)

We have identified 12 bugs involving three or more
features.

0

5

10

15

1-degree 2-degree 3-degree 4-degree 5-degree

#bugs

variability bugs
feature-interaction bugs

E.g.
I 221ac329e93 is a 5-degree bug due to 32-bit PowerPC

architectures not disabling kernel memory write-protection when
KPROBES is enabled.

19 / 28



Observation (9)

Presence conditions for variability bugs also involve
disabled features.

19 some-enabled
6 a
7 a ∧ b
5 a ∧ b ∧ c
0 a ∧ b ∧ c ∧ d
1 a ∧ b ∧ c ∧ d ∧ e

19 some-enabled-one-disabled
4 ¬a

11 a ∧ ¬b one of which is: (a ∨ a′) ∧ ¬b
3 a ∧ b ∧ ¬c
0 a ∧ b ∧ c ∧ ¬d
1 a ∧ b ∧ c ∧ d ∧ ¬e
2 other configurations
1 ¬a ∧ ¬b
1 a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e

20 / 28



Observation (9)

Presence conditions for variability bugs also involve
disabled features.

19 some-enabled
19 some-enabled-one-disabled
2 other configurations

I E.g. In 60e233a5660 the implementation of a function
add_uevent_var, when feature HOTPLUG is disabled, fails to
preserve an invariant causing a buffer overflow.

I If negated features occur in practice as often as in our sample, then
testing maximal configurations only, will miss a significant amount
of bugs.

21 / 28



Observation (10)

Effective testing strategies exist for the observed bug
presence conditions.

test formula(s) cost benefit∧
f ∈F f O(1) 48% (19/40)

∀g∈F : (
∧

f ∈F\{g} f ) ∧ ¬g O(|F |) 95% (38/40)
ψ O(2|F |) 100% (40/40)

Should we consider one-disabled configuration testing ?

22 / 28



Observation (10)

Effective testing strategies exist for the observed bug
presence conditions.

test formula(s) cost benefit∧
f ∈F f O(1) 48% (19/40)

∀g∈F : (
∧

f ∈F\{g} f ) ∧ ¬g O(|F |) 95% (38/40)
ψ O(2|F |) 100% (40/40)

Should we consider one-disabled configuration testing ?

22 / 28



Conclusion

I Variability bugs are diverse.
(i.e. not confined to particular types of errors, features, locations, . . . )

I Variability significantly increases the complexity of software
bugs.

23 / 28



Agenda

40 variability bugs in Linux: A Qualitative Study (10m)

Method
Example
Observations
Conclusion

Next step: Towards a feature-sensitive code scanner (5m)

24 / 28



Goals

I Real-World Verification R© of C with cpp.
I Primary goal is to find bugs, not verifying their absence.
I Primary subject of study is Linux.
I Simple problems, yet obscured by variability.
I Any technique that scales and works: type-checking, data-flow

analysis, model checking, . . . ?

25 / 28



Goals

I Real-World Verification R© of C with cpp.
I Primary goal is to find bugs, not verifying their absence.
I Primary subject of study is Linux.
I Simple problems, yet obscured by variability.
I Any technique that scales and works: type-checking, data-flow

analysis, model checking, . . . ?

and the name of the tool will be . . .

25 / 28



Goals

I Real-World Verification R© of C with cpp.
I Primary goal is to find bugs, not verifying their absence.
I Primary subject of study is Linux.
I Simple problems, yet obscured by variability.
I Any technique that scales and works: type-checking, data-flow

analysis, model checking, . . . ?

and the name of the tool will be . . . #check

:-)

25 / 28



Practical considerations

I Handle all C? Instead take partially preprocessed files.
I Assembly code? Support common functions built-in, and

ignore the rest (yes, this is unsound).
I False positives? No, thanks.
I Pointer analysis? Of course, starting with Steensgaard

unification-based algorithm (plus tweaks).
I Data-flow analysis? Use with care (and with pointer

analysis!).
I Build on existing infrastructure?

I would love to, there is no perfect match though.

26 / 28



Practical considerations

I Handle all C? Instead take partially preprocessed files.
I Assembly code? Support common functions built-in, and

ignore the rest (yes, this is unsound).
I False positives? No, thanks.
I Pointer analysis? Of course, starting with Steensgaard

unification-based algorithm (plus tweaks).
I Data-flow analysis? Use with care (and with pointer

analysis!).
I Build on existing infrastructure?

I would love to, there is no perfect match though.

26 / 28



More practical considerations

I Infeasible paths: Beyond the usual difficulties, some paths
are determined unfeasible due to hardware specifications.

I Interprocedural analysis: Would interprocedural techniques
scale? How many of these bugs can we found by
intraprocedural analysis?

I Aliasing: Everywhere. Yet, Linux seems to satisfy the
observations made by Manuvir Das1.

I Function pointers: Linux uses (nested) structs of function
pointers to represent interfaces for objects like drivers.

1Unification-based pointer analysis with directional assignments. PLDI’00
27 / 28



Thank you

28 / 28


	40 variability bugs in Linux: A Qualitative Study (10m)
	Method
	Example
	Observations
	Conclusion

	Next step: Towards a feature-sensitive code scanner (5m)

