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2 Introduction

+ Features carve software into meaningful and manageable
pieces

+ In the source code, the boundaries of a feature are often
not the same as the module in a program

+ A challenged faced in the maintenance of SPLs is the
identification and understanding of feature dependencies
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2 Motivation

|| Feature Dependencies in the source code of a SPL

Legend: PE — Program Element J0L  Maintenance problems related to the presence of a feature dependency
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T

+ Several parts of the code that are not relevant to the
feature maintenance are analysed

+ Developers are likely to ignore consciously (or not) feature
dependencies while reasoning about a maintenance task

¢ Other important parts of the code that should be revised
might be omitted
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2 Feature Interface

|| Looking at the source code level

+ As in a conventional stand-alone software (i.e. non-SPLs),
interfaces should help the understanding of the
communication between features in SPLs

+ Program elements configuring dependencies are part of
an implicit feature interface

+ Implicit feature interface: elements in the source code that
configure a communication between different features
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2> Challenge

| | Complex feature interfaces

o Feature interfaces may
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2 Towards a Solution

¢+ The proposed solution relies on the idea of Interface
Segregation Principle (ISP) that states that

“clients should not be forced to depend upon interfaces
L that they do not use”

J

+ We observe the idea of ISP from the point of view of SPL
maintenance and we argue that

Developers should not be forced to understand parts of
K an interface that are not useful to their tasks

/
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e Towards a Solution (simple example)

.| Identifying feature interface elements

Legend: PE — Program Element
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e Towards a Solution (simple example)

.| Identifying feature interface elements

Legend: PE — Program Element

Feature Interface {att1, qtt2, method1, method2}
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e Towards a Solution (simple example)

.| Identifying feature interface elements

Legend: PE — Program Element
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e Towards a Solution (simple example)

|| Understanding the feature interface

Legend: PE — Program Element

Feature Interface {att1, att2, method1, method?2}
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e Towards a Solution (simple example)

|| Understanding the feature interface

Legend: PE — Program Element
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e Towards a Solution (simple example)

|| Understanding the feature interface
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e Towards a Solution (simple example)

|| Understanding the feature interface

Important part of the code Legend: PE — Program Element
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+ Approach to segregate/organize the members of the
interface
+ Configuration knowledge

+ Properties and metrics of features and their dependencies

& ...

+ Beyond provided/required interface

+ Information about configurations
+ Preconditions, postconditions

* ...
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