Enhancing Feature Interfaces for Supporting
Software Product Line Maintenance

Bruno B. P. Cafeo

N

LES | DI |PUC-Rio - Brazil OPUS Group

2 Introduction

+ Features carve software into meaningful and manageable
pieces

+ In the source code, the boundaries of a feature are often
not the same as the module in a program

+ A challenged faced in the maintenance of SPLs is the
identification and understanding of feature dependencies

5/6/14 Page - 2

2 Motivation

|| Feature Dependencies in the source code of a SPL

Legend: PE — Program Element J0L Maintenance problems related to the presence of a feature dependency

PE1
LGS

p/0/4
Feature
/\:nder lr?lntenance PE4
REGULAR PE3
ACCOUNT PE2 /7
01 / PE5
PE7
SAVINGS PES

Feature Model

Source code

5/6/14 Page - 3

T

+ Several parts of the code that are not relevant to the
feature maintenance are analysed

+ Developers are likely to ignore consciously (or not) feature
dependencies while reasoning about a maintenance task

¢ Other important parts of the code that should be revised
might be omitted

5/6/14 Page -4

2 Feature Interface

|| Looking at the source code level

+ As in a conventional stand-alone software (i.e. non-SPLs),
interfaces should help the understanding of the
communication between features in SPLs

+ Program elements configuring dependencies are part of
an implicit feature interface

+ Implicit feature interface: elements in the source code that
configure a communication between different features

5/6/14 Page -5

2> Challenge

| | Complex feature interfaces

o Feature interfaces may
REGULAR_ACCOUNT
become large
account_number
type + Several elements are
sort_code member of an implicit
balance interface
paid_in[]
paid_out[]
getEndofMonthBalance()
getBalance() + Implicit feature interfaces
makeAPayment() hesi
getFullStatement() are not conhesive
V'eWACCtOT“”tD?;a”tS() + Groups of elements act
etlaxes
) together for the purpose of

a dependency

5/6/14 Page -6

2 Towards a Solution

¢+ The proposed solution relies on the idea of Interface
Segregation Principle (ISP) that states that

“clients should not be forced to depend upon interfaces
L that they do not use”

J

+ We observe the idea of ISP from the point of view of SPL
maintenance and we argue that

Developers should not be forced to understand parts of
K an interface that are not useful to their tasks

/

5/6/14 Page -7

e Towards a Solution (simple example)

.| Identifying feature interface elements

Legend: PE — Program Element

Feature Interface

PET e [PES

PE4
?
PE2 PE3
_7
/ PE5

PE7

PES

Feature blue

Source code

5/6/14 Page - 8

e Towards a Solution (simple example)

.| Identifying feature interface elements

Legend: PE — Program Element

Feature Interface {att1, qtt2, method1, method2}
PE1
«._|PE6
PE4
{att3, att4, att5, method3}
>
PE2 | |PES
7
PES
{methpd4, method5, .~ /
att,6, ptt7}
PE7
PES8

Feature blue

Source code

5/6/14 Page - 9

e Towards a Solution (simple example)

.| Identifying feature interface elements

Legend: PE — Program Element

Feature Interface {att1, att2, method1, method?2}

PE" :
att1 | PES
att2

att3
att4 {att3, att4, att5, method3}

attd

att6 pe2 | |PE3
att7 —

method1
method?2 {methpd4, method5,
method3 att6, ptt7} | 7

method4 PE7
method5 PES

PE4

PES

Feature blue

Source code

5/6/14 Page - 10

e Towards a Solution (simple example)

|| Understanding the feature interface

Legend: PE — Program Element

Feature Interface {att1, att2, method1, method?2}

PE1 ;
att1 «_| PE6
att2

PE4

s\l {att3, att4, att5, method3}

clLLo)

att6 pe2 / |PE3
att7 PE5

method1
method2 {methpd4, methods,

rrginods att,6, ptt7}
method4 PE7
method5 PES

Feature blue

Source code

5/6/14 Page - 11

e Towards a Solution (simple example)

|| Understanding the feature interface

Legend: PE — Program Element

Feature Interface {att1, qtt2, method1, method2}
PE1
— — PEG6
att2
att6 . ot . |PE4
att7 att3, att4, at’t5, method
method1 | "
-5 ! |PE3
method2 — ethod3 PE2 i
method4 — PE5
method5
{methpd4, method5, .~
att,6, ptt7}
PE7
PES8
Feature blue

Source code

5/6/14 Page - 12

e Towards a Solution (simple example)

|| Understanding the feature interface

Legend: PE — Program Element

Feature Interface {att1, qtt2, method1, method2}
PE1
il —_ PEG6
att2
method1 42 (a3 3 PE4
method?2 ’ att3, att4, at’t5, method
pe2 | |PE3
att6 PES
att7
method4 {methpd4, method5, .~
method5 att,6, ptt7}
PE7
PES8
Feature blue

Source code

5/6/14 Page - 13

e Towards a Solution (simple example)

|| Understanding the feature interface

Important part of the code Legend: PE — Program Element

Feature Interface {att1, att2, method1, method2}
Relevant elements of PE1
attl the collaboration . PEG
att2
method1 / PE4
method?2 o {att3, att4, att5, method3}
PE2 | |PE3
atté PES
att7
method4 {methpd4, method5, .
method5 att,6, ptt7}
PE7

PES8

Feature blue

Source code

5/6/14 Page - 14

+ Approach to segregate/organize the members of the
interface
+ Configuration knowledge

+ Properties and metrics of features and their dependencies

& ...

+ Beyond provided/required interface

+ Information about configurations
+ Preconditions, postconditions

* ...

5/6/14 Page - 15

Enhancing Feature Interfaces for Supporting
Software Product Line Maintenance

Bruno B. P. Cafeo

N

LES | DI |PUC-Rio - Brazil OPUS Group

