Keep Your Levels Straight: Separating Variation from Aggregation in Feature Models

Martin Erwig

School of EECS
Oregon State University

Keep Your Titles Short

Martin Erwig

School of EECS
 Oregon State University

Fix Feature Diagrams

Martin Erwig

School of EECS
 Oregon State University

Main Points

(1) Don't use Propositional Formulas as the semantics of Feature Diagrams.

(2) Define compositional semantics.

Because they neglect the domain structure
(3) Reflect type structure in syntax.

Semantics-Driven DSL
Formal and Practical Aspects of Domain-Specific Languages, 2012
Semantics First! Rethinking the Language Design Process Int. Conf. on Software Language Engineering, 20II

Static Feature Modeling

Set of all features
 Feature
 Set of all product lines

 $f, g \in F$
 $p, q \in P^{F}=2^{F}$ $L, M \in P L=2^{P}$
 Product line

$$
\begin{aligned}
F & =\{f, g\} \\
P & =\{\varnothing,\{f\},\{g\},\{\overrightarrow{f, g\}\}} \\
P L & =\{\varnothing,\{\varnothing\},\{f\},\{g\},\{f g\},\{\varnothing, f\},\{\varnothing, g\},\{\varnothing, f g\}, \ldots,\{\varnothing, f, g, f g\}\}
\end{aligned}
$$

Feature Diagrams

Feature Diagrams:
A DSL for Feature Modeling

Syntax: $\quad S=\{$ Trees over $F\}$
Semantics: $D=P L=2^{P}=2^{2 F}$

Aggregation vs.Variation

$\llbracket \operatorname{mand}(\mathrm{f}, \mathrm{g}) \rrbracket=\{\varnothing, \mathrm{fg}\}$
$\llbracket \operatorname{mand}(\mathrm{f}, \mathrm{g}) \rrbracket=\mathrm{f} \Leftrightarrow \mathrm{g}$

f	g	$\mathrm{f} \Leftrightarrow \mathrm{g}$
0	0	l
0	I	0
I	0	0
I	I	I

$\llbracket o p t(\mathrm{f}, \mathrm{g}) \rrbracket=\mathrm{f} \Longleftarrow \mathrm{g}$

f	g	$\mathrm{f} \Leftarrow \mathrm{g}$
0	0	l
0	I	0
l	0	l
I	I	I

Aggregation vs.Variation

Building product

$$
\begin{aligned}
& \llbracket \operatorname{mand}(\mathrm{f}, \mathrm{~g}) \rrbracket=\{\varnothing, \mathrm{fg}\} \\
& \llbracket \operatorname{mand}(\mathrm{f}, \mathrm{~g}) ; \operatorname{mand}(\mathrm{f}, \mathrm{~h}) \rrbracket=\{\varnothing, \mathrm{fgh}\}
\end{aligned}
$$

Aggregation operates on individual products

$$
\begin{aligned}
& \llbracket o p t(f, g) \rrbracket=\{\varnothing, f, f g\} \\
& \llbracket o p t(f, g) ; o p t(f, h) \rrbracket=\{\varnothing, f, f g, f h, f g h\}
\end{aligned}
$$

$$
\llbracket o p t(\mathrm{f}, \mathrm{~g}) ; \mathrm{opt}(\mathrm{f}, \mathrm{~h}) \rrbracket=\mathrm{f} \Longleftarrow \mathrm{~g} \wedge \mathrm{f} \Longleftarrow \mathrm{~h}
$$

Variation operates on sets of products

Simplifying Assumption

Ignore empty products

$\llbracket o p t(f, g) \rrbracket=\{f, f g\}$

Compositionality

Gottlob Frege

Compositionality

$$
\llbracket f\left(e_{l}, \ldots, e_{k}\right) \rrbracket=\llbracket f \rrbracket\left(\llbracket e_{I} \rrbracket, \ldots, \llbracket e_{k} \rrbracket\right)
$$

Inductive Definition

Napoleon kicked the bucket
\dagger May 5, 1821

Napoleon booted the bucket

FD Semantics is Not Inductive

"We have to process all edges in one big step"

Inductive Definition

Inductive Definition

$$
\begin{aligned}
& \llbracket o p t(o p t(e, f), g) \rrbracket \\
& =\{p, p g \mid p \in \llbracket o p t(e, f) \rrbracket\} \\
& =\{p, p g \mid p \in\{e, e f\} \rrbracket\} \\
& =\{e, e g, \text { ef, efg }\}
\end{aligned}
$$

Loss of Compositionality

$$
\llbracket \operatorname{mand}(\mathrm{D}, \mathrm{~g}) \rrbracket=\{p \mathrm{~g} \mid p \in \mathbb{D} \rrbracket\}
$$

Inductive Definition

$$
\begin{aligned}
& \llbracket \operatorname{mand}(o p t(\mathrm{e}, \mathrm{f}), \mathrm{g}) \rrbracket \\
&=\{p \mathrm{pg} \mid p \in \llbracket \mathrm{opt}(\mathrm{e}, \mathrm{f}) \rrbracket\} \\
&=\{p \mathrm{pg} \mid p \in\{\mathrm{e}, \mathrm{ef} \rrbracket \rrbracket\} \\
&=\{\mathrm{eg}, \mathrm{efg}\} \\
&\{\mathrm{e}, \mathrm{efg}\}
\end{aligned}
$$

Loss of Compositionality

【opt(e, mand(f, g))】
$=\{\mathrm{e}, \mathrm{e} p \mid p \in \llbracket \operatorname{mand}(\mathrm{f}, \mathrm{g}) \rrbracket\}$
$=\{\mathrm{e}, \mathrm{e} p \mid p \in\{\mathrm{fg}\}]\}$
$=\{\mathrm{e}, \mathrm{efg}\}$

Observations

And Then ...

... I ran out of time

Product Line Diagrams

Feature Nodes
Alternative Notation for Feature Diagram

Product / Aggregation Nodes

Family / Variation Nodes

The Choice Calculus: A Representation of Software Variation ACM Trans. on Software Engineering and Methodology 2 I(I), 201 I

Examples

Credit card \Rightarrow High

Diagram Laws

More Diagram Laws

Diagram Reasoning

Diagram Reasoning

Diagram Reasoning

And Finally ...

GOD - Greatest of Diagrams

Inbred - Inductive Broduct Line Reasoning Diagrams Splendid - Software Product Line Enriching Reasoning Diagrams Do it
In-Law - Inductive, Lawful Notation for Product Families

Then I met her!

