
Keep Your Levels Straight:
Separating Variation from

Aggregation in Feature Models

Martin Erwig 
 

School of EECS 
Oregon State University

FA9550-09-1-0229
CCF-0917092
CCF-1219165

IIS-1314384

Keep Your Titles Short

Martin Erwig 
 

School of EECS 
Oregon State University

FA9550-09-1-0229
CCF-0917092
CCF-1219165

IIS-1314384

Fix Feature Diagrams

Martin Erwig 
 

School of EECS 
Oregon State University

FA9550-09-1-0229
CCF-0917092
CCF-1219165

IIS-1314384

Main Points

4

➊ Don’t use Propositional Formulas as
the semantics of Feature Diagrams.

➋ Define compositional semantics.

➌ Reflect type structure in syntax.

Because they neglect
the domain structure

Semantics-Driven DSL  
Formal and Practical Aspects of Domain-Specific Languages, 2012	

Semantics First! Rethinking the Language Design Process 
Int. Conf. on Software Language Engineering, 2011

Static Feature Modeling

f, g 	

 ∈ F  
p, q 	

 ∈ P	

 = 2F 
L, M 	

∈ PL	

= 2P

Feature
Set of all features

Set of all products

Product

Product line
Set of all product lines

P = {∅, {f}, {g}, {f, g}}

{∅, f, g, fg}
Abbreviation

F = {f, g}

PL = {∅, {∅}, {f}, {g}, {fg}, {∅, f}, {∅, g}, {∅, fg}, …, {∅, f, g, fg}}

Feature 
Modeling 
Domain

5

Syntax: S = {Trees over F}
Semantics: D = PL = 2P = 22F

Feature Diagrams

6

⟦mand(f, g)⟧ = f ⟺ g

f

g

Feature Diagram

Feature Diagrams:	

A DSL for Feature Modeling

⟦mand(f, g)⟧ = {∅, fg}

f g f ⟺ g
0 0 1
0 1 0
1 0 0
1 1 1

∅

fg

“Product Line Diagram”

“Feature Selection Diagram”
“Feature Relationship Diagram”

f g f ⟺ g
0 0 1
0 1 0
1 0 0
1 1 1

Aggregation vs. Variation

7

f

g

⟦mand(f, g)⟧ = f ⟺ g

⟦mand(f, g)⟧ = {∅, fg}

f

g

f g f ⟸ g
0 0 1
0 1 0
1 0 1
1 1 1

⟦opt(f, g)⟧ = f ⟸ g

⟦opt(f, g)⟧ = {∅, f, fg}

⟦opt(f, g)⟧ = {∅, f, fg}

⟦mand(f, g)⟧ = {∅, fg}

Aggregation vs. Variation

8

⟦mand(f, g)); mand(f, h)⟧ = f ⟺ g ∧ f ⟺ h

⟦mand(f, g); mand(f, h)⟧ = {∅, fgh}

⟦opt(f, g); opt(f, h)⟧ = f ⟸ g ∧ f ⟸ h

⟦opt(f, g); opt(f, h)⟧ = {∅, f, fg, fh, fgh}

f

g h

f

g h

Building product

Adding features
to one product

Creating variation

Adding
products

Aggregation operates on individual products

Variation operates on sets of products

Simplifying Assumption

9

Ignore empty products

f

g

⟦mand(f, g)⟧ = {fg}

f

g

⟦opt(f, g)⟧ = {f, fg}

⟦mand(f, g); mand(f, h)⟧ = {fgh}
f

g h

⟦opt(f, g); opt(f, h)⟧ = {f, fg, fh, fgh}
f

g h

Compositionality

10

Gottlob Frege

⟦f(e1, …, ek)⟧ = ⟦f⟧(⟦e1⟧, …, ⟦ek⟧)

Compositionality

Napoleon booted the bucket
X

kick
bucket

Napoleon kicked
the bucket

† May 5, 1821

Napoleon Bonaparte

Inductive Definition

FD Semantics is  
Not Inductive

11

⟦opt(f, g); opt(f, h)⟧ = {f, fg, fh, fgh}
f

g h

“We have to process all edges in one big step”

Inductive Definition

12

f

g

⟦opt(f, g)⟧ = {f, fg}

⟦f⟧ = {f}f

⟦mand(f, g)⟧ = {fg}

f

g

D

g

⟦mand(D, g)⟧ = { pg | p ∈ ⟦D⟧}

D

g

⟦opt(D, g)⟧ = { p, pg | p ∈ ⟦D⟧}

⟦f⟧ = {f}f

Non-InductiveInductive

Loss of Compositionality

13

D

g

⟦opt(D, g)⟧ = { p, pg | p ∈ ⟦D⟧}

e

f

g

⟦opt(opt(e, f), g)⟧  
= { p, pg | p ∈ ⟦opt(e, f)⟧}  
= { p, pg | p ∈ {e, ef}⟧}  
= {e, eg, ef, efg}

D

X

Inductive Definition

Loss of Compositionality

14

e

f

g

⟦mand(opt(e, f), g)⟧  
= { pg | p ∈ ⟦opt(e, f)⟧}  
= { pg | p ∈ {e, ef}⟧}  
= {eg, efg}

D

X

D

g

⟦mand(D, g)⟧ = { pg | p ∈ ⟦D⟧}

{e, efg}

Inductive Definition

Loss of Compositionality

15

⟦opt(e, mand(f, g))⟧  
= { e, ep | p ∈ ⟦mand(f, g)⟧}  
= { e, ep | p ∈ {fg}⟧}  
= {e, efg}

e

f

g

D

f

D

⟦opt(f, D)⟧ = { f, fp | p ∈ ⟦D⟧}

✓
⟦opt(e, opt(f, g))⟧  
= { e, ep | p ∈ ⟦opt(f, g)⟧}  
= { e, ep | p ∈ {f, fg}⟧}  
= {e, ef, efg}

e

f

g

D

D

g

⟦opt(D, g)⟧ = { p, pg | p ∈ ⟦D⟧}

✓

Observations

16

binds stronger than

associates to the “bottom”

And Then …

… I ran out of time

17

Product Line Diagrams

18

Feature Nodesf

Family / Variation Nodes

Δ

DD

…

Product / Aggregation Nodes
DD

…

Only internal nodes

D ::=

|

|

Alternative Notation  
for Feature Diagram

Only in leaves

Arg

39

True

✓Fun

not

id
succ✓

Choice
Calculus

✓

ChoiceCalculus.org
The Choice Calculus: A Representation of Software Variation  
ACM Trans. on Software Engineering and Methodology 21(1), 2011

Examples

19

Bank transfer

Payment

Credit card

Security

StandardHigh

Catalog Search

Search ϵ

Credit card ⇒ High

Diagram Laws

20

Δ

FE

D

Δ

ED FD

Δ

ED

D

≣

ΔD

ϵE

≣

More Diagram Laws

21

Δ

ED

Δ’

GF

Δ(D, E) • Δ’(F, G) 
= Δ(D • Δ’(F, G), E • Δ’(F, G)) 
= Δ(Δ’(D•F, D•G), Δ’(E•F, E•G))

Δ’

GF

Δ’

FE GE

Δ’

FD GD

Δ

≣

Diagram Reasoning

22

T

Payment

CC

Security

SH

Payment

Security

HT ST

Security

HCC

T CC

Cat Search

Search ϵ

Payment

Security

HT ST

Security

HCC SCC

T CC

X
Credit card ⇒ High

Diagram Reasoning

23

Payment

Security

HT ST

Security

HCC

T CC
Payment

HCC

T CC

Security

SH

T

Cat Search

Search ϵ

Diagram Reasoning

24

T

Payment

CC

Security

SH

Cat Search

Search ϵ
Credit card ⇒ High

Payment

HCC

T CC

Security

SH

T

Cat Search

Search ϵ

B

And Finally …

25

GOD – Greatest of Diagrams

In-Law – Inductive, Lawful Notation for Product Families

Inbred – Inductive Product Line Reasoning Diagrams
Splendid – Software Product Line Enriching Reasoning
Diagrams Do it

