Keep Your Levels Straight:
Separating Variation from
Aggregation in Feature Models

Martin Erwig

School of EECS
Oregon State University

% . CCF-0917092
"Y1, CCF-1219165
[1S-1314384

Keep Your Titles Short

Martin Erwig

School of EECS
Oregon State University

CCF-0917092
Ny, CCF-1219165
[1S-1314384

Fix Feature Diagrams

Martin Erwig

School of EECS
Oregon State University

CCF-0917092
Ny, CCF-1219165
[1S-1314384

Main Points

© Don’t use Propositional Formulas as
the semantics of Feature Diagrams.

Because they neglect

» . the domain structure \
® Define compositional semant:cs.J

© Reflect type structure in syntax. J

Semantics-Driven DSL
Formal and Practical Aspects of Domain-Specific Languages, 2012

Semantics First! Rethinking the Language Design Process _—
Int. Conf. on Software Language Engineering, 201 |

Static Feature Modeling

Set of all features

Feature
\ f, g € F l_— Set of all products
,q e P =2F
Product/.fl_) 7\4 c pl = 7P Feature
’ —— Modeling
pree el Set of all product lines Domain
F=1f g} _—Abbreviation 12, f & fg}

P=1{2,{fl1g}f g}
PL =12, 12}, {f} {81 fgh 12, 1119, g1 19D, fgh, ..., 19, 1, & fe}}

Feature Diagrams

Feature Diagrams: J

A DSL for Feature Modeling G s D = Pl = 2P = 22
emantics: D = PL = 2" =

S)'ntax: S = {Trees — F}J

Feature Diagram

:
£

“Product Line Diagram”

[mand(f, g)] = {2, fg} J<

mand ez) flglfeg
2 I
/ 0 0 | oo > O
“Feature Selection Diagram” 0l 5
“Feature Relationship Diagram” "o ;
| | | e a fg

Aggregation vs.Variation

f f
8 8
[mand(f, g)] = {2, fg} [opt(f, g)] = 12, 1, fg}
[mand(f,g)] =f & g | [opt(f, g)] = f = g |
flglifesg flglfeg
0[O | 0[O |
0| | 0 0| 0
| | O 0 | | O |
|| | | |] | |

Aggregation vs.Variation

/

\

&

h

Building product

[mand(t,g)1 = {2.fg} 4 Adding features
[mand(f, g); mand(f, h)1 = {@,fgh} | 10 one product

[mand(f, g)); mand(f,h)] = f g A f & hJ

Aggregation operates on individual productsJ

f

3

Creating variation
[opt(f,)1 = {2, f, fg} | Adding

 Lopt(f g); opt(f.)] = {2, f.fg fhfgh} | oqucis

[opt(f, g); opt(f,h)] = f =g A f <= hJ

Variation operates on sets of productsJ

-

Simplifying Assumption

Ignore empty products J

[mand(f, g)] = {fg} J

-+

09

[opt(f, g)1 = {f, fg} |

f

/

-

[mand(f, g); mand(f, h)] = {fgh}J

&

h

f

/ \ Lopt(f, g); opt(f, h)] = {f, fg, fn, fgh} |

&

h

Compositionality

Compositionality |
[fle, ...,e)] = [fl(lel, ...,[[ek]]))

Inductive Definition

Gottlob Frege

kick Napoleon kicked
bucketJ the bucket

+ May 5, 1821

@M

Napoleon bOOted the bucketJ Napoleon Bonaparte

FD Semantics is
Not Inductive

“We have to process all edges in one big step”J

f
/ \) [opt(f, g); opt(f,)] = {f,fg, fh, fgh} |

g h

Inductive Definition

] M=) @& e [] 1=

O

| tmond@g1=(plpe D) | | Emondig = 0|
8 8

D] ;
l [opt(D,g)1 = { p. pg | p € [DI} | s l [opt(f, &)1 = {f, fg} |
& &

Inductive Non-Inductive

Loss of Compositionality

l [opt(D,g)1 = {p.pg | p € [DI}| Inductive Definition

={p.pg|p € [opt(e,)1}

RSl R
D! l . Lopt(opt(e.f),g)]
f

=B [N : ={p.pg | p € {e, ef}l}
l = {e, eg, ef, efg}

Loss of Compositionality

O

1 [mand(D, g)l = { pg | p € [DI} Inductive Definition
g

={pg|p € [opt(e, NI}
={pg|p e efil}

l = {eg, efg}r ’

g {e, efg}

e |
D l [mand(opt(e, f), g)]
: f

Loss of Compositionality

i O f
l [opt(D, 1P pe | p < DT} L [opt(f, D)1 = { f,fp | p € [DI} |
g . D i

. ‘ [opt(e, opt(f, g))1 ‘/ ‘ _. [opt(e, mand(f, g))1

P {e ep|p e lopt(f, g)I} T [P T {e,ep|p e [mand(f,g)I}
l i ={eep|peffgl} D 1 i ={eep|pefg}
8 8

i = {e, ef, efg} = {e, efg}

Observations

l binds stronger than J l

l associates to the “bottom”J

And Then ...

... | ran out of time

Product Line Diagrams

Alternative NotationJ

. for Feature Diagram
2 Feature Nodqs\J

"> Only in leaves

O
I

. /\ Product / Aggregation NodesJ

Only internal nodes

Family / Variation Nodes

The Choice Calculus: A Representation of Software Variation
ACM Trans. on Software Engineering and Methodology 21(1), 201 | ChoiceCaIcqus.org

Examples
./7%0;)\:3

Catalogue Payment Security Search

S

Bank transfer | | Credit card High Standard

‘ Mandatory /0\ Alternative
!; Optional /’\ Or

CreditCard implies High |

Catalog

Credit card = High

Diagram Laws

More Diagram Laws

A(D,E) « A'(F. G)
= A(D * N'(F, G),E « A'(F. G))
= A(A'(DF, D*G), A'(E*F, E+G))

21

Diagram Reasoning

H S Search €

T HT S CCHCCS T HT
Credit card = High

S

CC H

22

T HT

S

Diagram Reasoning

CC H

23

Diagram Reasoning

Cat

Search €

T CC H S Search €
Credit card = High

24

And Finally ...

GOD — Greatest of Diagrams

Inbred — Inductive Product Line Reasoning Diagrams
Splendid — Software Product Line Enriching Reasoning
Diagrams Do it

In-Law — Inductive, Lawful Notation for Product Families

My Mother [n
Law and [were
happy for 20
vears.

Then [met her!

25

