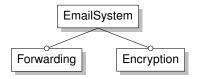
## Exploring Feature Interactions in the Wild

### **Sergiy Kolesnikov**<sup>1</sup> Judith Roth<sup>1</sup> Sven Apel<sup>1</sup> Norbert Siegmund<sup>1</sup> Christian Kästner<sup>2</sup> Brady Garvin<sup>3</sup>

<sup>1</sup>University of Passau, Germany <sup>2</sup>Carnegie Mellon University, USA

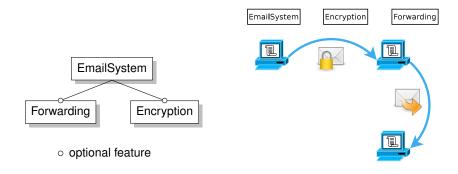
<sup>3</sup>University of Nebraska–Lincoln, USA


### FOSD Meeting 2014, Dagstuhl



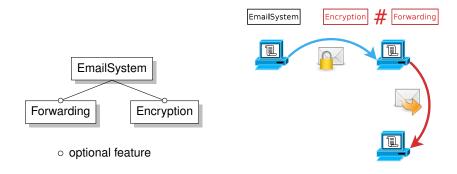
Fakultät für Informatik und Mathematik








o optional feature


R. Hall. Fundamental nonmodularity in electronic mail. Automated Soft. Eng. '05

### Example of a Feature Interaction



R. Hall. Fundamental nonmodularity in electronic mail. Automated Soft. Eng. '05

### Example of a Feature Interaction



R. Hall. Fundamental nonmodularity in electronic mail. Automated Soft. Eng. '05

Specification violation

 $\phi := \begin{array}{c} \mathsf{AG} \; (\mathsf{recv}(\mathsf{msg}\; m) \land m.\mathsf{isEncrypted}) \Rightarrow \\ ((\mathsf{send}(\mathsf{msg}\; m) \Rightarrow m.\mathsf{isEncrypted}) \; \mathsf{R} \; \mathsf{send}(\mathsf{msg}\; m)) \end{array}$ 

Specification violation

 $\phi := \begin{array}{c} \mathsf{AG} \; (\mathsf{recv}(\mathsf{msg}\; m) \land m.\mathsf{isEncrypted}) \Rightarrow \\ ((\mathsf{send}(\mathsf{msg}\; m) \Rightarrow m.\mathsf{isEncrypted}) \; \mathsf{R} \; \mathsf{send}(\mathsf{msg}\; m)) \end{array}$ 

Encryption  $\land$  Forwarding  $\not\models \phi$ 

Specification violation

 $\phi := \begin{array}{c} \mathsf{AG} \; (\mathsf{recv}(\mathsf{msg}\; m) \land m.\mathsf{isEncrypted}) \Rightarrow \\ ((\mathsf{send}(\mathsf{msg}\; m) \Rightarrow m.\mathsf{isEncrypted}) \; \mathsf{R} \; \mathsf{send}(\mathsf{msg}\; m)) \end{array}$ 

Encryption  $\land$  Forwarding  $\not\models \phi$ 

Minimality

 $Encryption \models \phi$   $Forwarding \models \phi$ 

Specification violation

 $\phi := \begin{array}{c} \mathsf{AG} \; (\mathsf{recv}(\mathsf{msg}\; m) \land m.\mathsf{isEncrypted}) \Rightarrow \\ ((\mathsf{send}(\mathsf{msg}\; m) \Rightarrow m.\mathsf{isEncrypted}) \; \mathsf{R} \; \mathsf{send}(\mathsf{msg}\; m)) \end{array}$ 

Encryption  $\land$  Forwarding  $\not\models \phi$ 

Minimality

 $Encryption \models \phi$   $Forwarding \models \phi$ 

Encryption # Forwarding

### **External Interactions**

External Interactions:

Functional (e.g., mail is forwarded unencrypted)

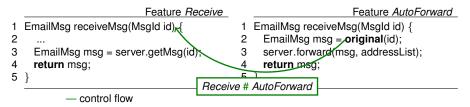


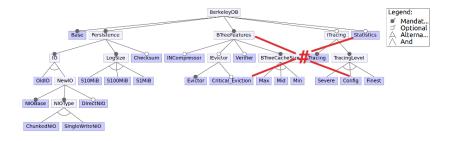
Non-functional (e.g., unexpected performance drop/gain)

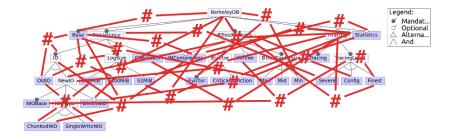
DBMS with ENCRYPTION and COMPRESSION features:

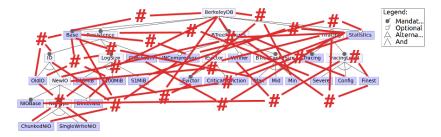
0

Expected: 
$$\checkmark + \bigcirc = -40\%$$
  
 $\bigcirc = -30\%$  (rps)  
Expected:  $\checkmark + \bigcirc = -40\%$   
Measured:  $\checkmark + \bigcirc = -20\%$   
Interaction:  $\checkmark \# \bigcirc = +20\%$ 


### **Internal Interactions**

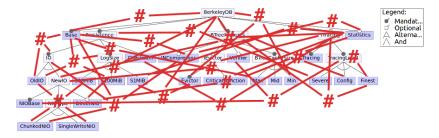

Internal Interactions:


Structural (e.g., code nesting)


- 1 // from BusyBox
- 2 **#if** ENABLE\_FEATURE\_HUMAN\_READABLE && ENABLE\_FEATURE\_DF\_FANCY
- 3 opt\_complementary = "k-mB:m-Bk:B-km"; // coordination code
- 4 #endif

Operational (e.g., variable control flow)










#### Questions

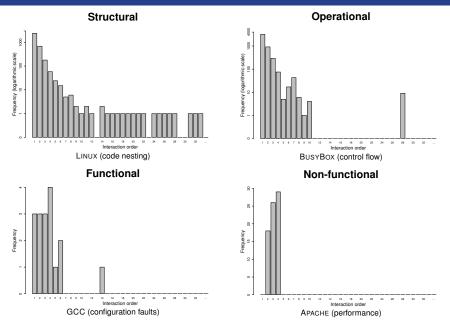
- How many interactions?
- Which order?
- Which visibility class?
- What is the *frequency distribution* of order and visibility?



- Questions
  - How many interactions?
  - Which order?
  - Which visibility class?
  - What is the *frequency distribution* of order and visibility?
- Goals
  - Best strategies for interaction detection, management, and resolution
  - Relationships between interactions of different kind
  - Prediction of interactions

## cppstats

# TypeChef


#### Subject Systems



|         | Visibility                               | $ \mathcal{F} $ | LOC       | Description         |
|---------|------------------------------------------|-----------------|-----------|---------------------|
| LINUX   | Structural<br>(code nesting)             | 9 102           | 5 986 427 | OS kernel           |
| BUSYBOX | <b>Operational</b><br>(control flow)     | 792             | 191 615   | UNIX utilities      |
| GCC     | <i>Functional</i> (configuration faults) | 171             | 2 648 177 | Compiler collection |
| Apache  | Non-functional<br>(performance)          | 9               | 230 277   | Web server          |

 $|\mathcal{F}|$  – number of features

## Distribution of Different Kinds of Feature Interactions



### **Further Case Studies**

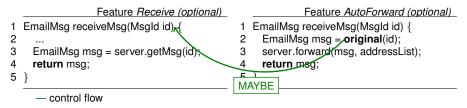
#### Functional interactions:

14 systems. Interaction faults up to the order of 7.
 GCC, Apache, MySQL, OpenLDAP, RAX Planner ...

#### Non-Functional interactions:

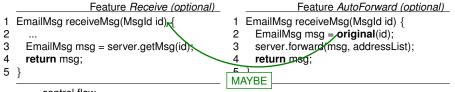
 6 systems. Performance interactions up to the order of 4. Apache, BerkeleyDB-C, BerkeleyDB-Java, LLVM, SQLite, x264-codec.

#### Structural interactions:


- 3 systems. Line coverage interactions up to the order of 6.
   FTP-server, IRC-server, grep.
- 39 systems. Code nesting up to the order of 33.
   Apache, GCC, SQLite, BerkeleyDB...

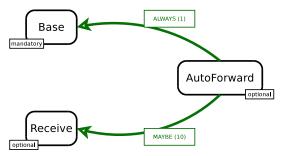
#### Operational interactions:

■ **5 systems**. Control-flow interactions up to the **order of 28.** Apache, BerkeleyDB, Busybox, OpenSSL, SQLite.


## SPL Type Errors vs. Static Attributes

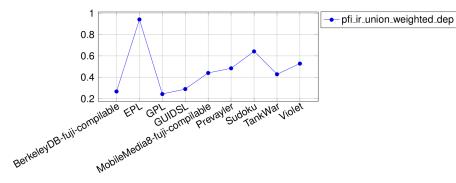
#### Product-line specific type errors




## SPL Type Errors vs. Static Attributes

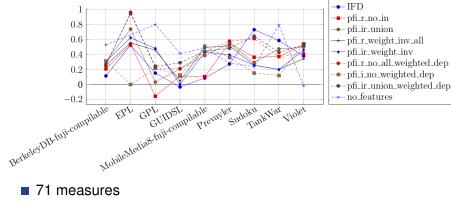
#### Product-line specific type errors




— control flow

Predictor: Out degree measure on feature-call-graph




## SPL Type Errors vs. Static Attributes (Evaluation)

Correlation between number of type errors and measures:



# SPL Type Errors vs. Static Attributes (Evaluation)

#### Correlation between number of type errors and measures:



29 Java product-lines

### Conclusion

Empirical study on interactions in real-world systems:

- Questions
  - How many interactions?
  - Which order?
  - Which visibility class?
  - What is the *frequency distribution* of order and visibility?
- Goals
  - Best strategies for interaction detection, management, and resolution
  - Relationships between interactions of different kind
  - Prediction of interactions