
Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Runtime GUI Adaptation in
Dynamic Software Product Lines

Dean Kramer
deankramer@acm.org

University of West London/Middlesex University

FOSD 2014

deankramer@acm.org

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Agenda

1 Introduction & Recap

2 Runtime Adaptation

3 Implementation & Tests

4 Conclusions

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Background I

Smart phones have been
highly prolific.

Large array of applications
available

Typically contain GPS,
Internet, Compass, Light,
Accelerometer sensors.

Sensor data can gain a wide
range of contextual
information, that can be
consumed by context aware
applications.

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Background II : Software Product Lines (SPL)

Develop similar software from common assets

Feature-Oriented Software Development as a method for
modularising system features

Dynamic Software Product lines (DSPL)

Runtime feature binding
Unified adaptation

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Problem - GUI Variability

Increasingly popular to develop GUI applications using more
than general purpose languages

GUIs can exhibit variability in SPLs

Not all GUI variability can be statically realised:

Adaptive GUIs
Plastic UIs

Logic adaptation already possible with DSPLs

Normally only single language solutions
No dedicated GUI support

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Scenario - Content Store Application

Feature Model Screen Variability

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Document-Oriented GUIs

DSLs for declaring GUI
structure, and properties

Also known as:

GUI Description
Languages
GUI Markup Languages

Different implementations:

Android (XMLBlock)
iOS & OSX (XNib/Nib)
Microsoft XAML
Mozilla XUL
QT QML

Android GUI Document Excerpt

<FrameLayout

android:id="@+id/mainFrame"

android:layout_width="match_parent"

android:fitsSystemWindows="true"

.....>

....

<Button

android:id="@+id/applications"

android:layout_width="160dp"

android:text="@string/apps"

android:background="@drawable/apps"/>

<LinearLayout

android:id="@+id/adverts"

....>

<TextView

android:id="@+id/appAdsTitle"

android:text="@string/PopularFreeAppss"/>

...

</LinearLayout>

</FrameLayout>

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Previous Work Recap: GPCE 2013 Paper

Variability implemented in refinements.

Use Dynamic Binding Units

Generate GUI document variants at compile-time using
Superimposition:

Based on document refinement combinations, not just feature
combinations.
All combinations are checked for FM satisfiability

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Previous Work Recap: GPCE 2013 Paper con.

Code Generation and Transformation

Generate variant management code
Transform source code to call the variant management when a
GUI document is used.

Adaptation only handled when GUI document is needed
(when it is created).

No full adaptation once the GUI is visible to the user.

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Runtime Adaptation Overview

Full runtime adaptation now handled for:

GUI Document related
Source code related

Adaptation can be handled either:

On inflation: When the GUI is first created (not program, but
a particular screen).
When Active: After a GUI is already visible.

Two class methods used with FOP to assist runtime
adaptation:

Document Initialisation Methods
Other GUI Adaptations

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Methods for Runtime Adapt.: Document Initialisation

Used for all operations related to the GUI initialisation

Can be also invoked in the GUI controller constructor

Can be refined like other methods

Add initialisation operations when adding an additional widget

Video feature example for homepage

public void onCreate_homescreen(ViewGroup vg){

original();

Button btnVideo = (Button)vg.findViewById(R.id.video);

btnVideo.setOnClickListener(new onClickListener() {

public void onClick(View v) {

gotoVideoStoreScreen();

}

});

}

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Methods for Runtime Adapt.:Other GUI Adaptations

GUI adaptation can be implemented in sourcecode including
visual and nonvisual e.g. gestures

Contained in onGUIConfiguration methods

Can be refined also

Is not automatically reversed!

Example operations to implement a List “swipe to remove”

public void onGUIConfiguration() {

SwipeDismissListViewTouchListener touchListener =

new SwipeDismissListViewTouchListener(

listView, new SwipeDismissListViewTouchListener.OnDismissCallback() {

public void onDismiss(ListView listView, int[] reverseSortedPositions) {

for (int position : reverseSortedPositions) {

adapter.remove(adapter.getItem(position));

}

adapter.notifyDataSetChanged();

}

});

listView.setOnTouchListener(touchListener);

listView.setOnScrollListener(touchListener.makeScrollListener());

}

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Generation & Transformations

Three additional types of components generated:

Adaptation Manager - Orchestrates the adaptation.
State Transfer Component - For ensuring state is transfered
between variants.
Feature classes (similar to FeatureC++) - Which hold data
needed for the GUI adaptation.

Further code transformations within the GUI controllers to
handle the variant reloading, and tree composition.

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Adaptation Process

Runs over all currently
active controllers (Android
activities and fragments).

Can handle adaptation of
multiple documents in a
reconfiguration.

Adapts each instance of that
GUI tree (important for
lists!)

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Implementation

Developed to handle applications for the Android platform

Built on top of FeatureIDE (No extension name yet)

Static composition handled using FeatureHouse1

FeatureDroid (DSPL Middleware)2 used for handling
context-acquisition and runtime configuration management

1https://github.com/deankramer/featurehouse
2http://deansserver.co.uk/gitweb/?p=AndroidDSPLMiddleware.git;a=summary

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Scaling & Performance

Examined how GUI document variability affects:

Variant and support code generation time.

Application size.

The size of the installation file (Android .apk file)
The installation size once installed on device

Runtime adaptation time.

Base GUI document->Variant with all active features->Base
GUI document.
Average time of 1000 adaptation cycles.

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Scaling & Performance con.

Tested different generated GUI document sizes including
<1KB, 2KB, 4KB, 8KB

Each refinement adds an additional button to the GUI
document

Refinements contained in optional features.

Test machines:

Intel i5 laptop with 8GB of ram, Windows 8.1, standard HDD.
Nexus S phone running Android 4.2.1 - Single core, 3 1/12
years old.

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Generation Time (Log)

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Generation Time (Lin)

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Application Installation Size Increase (Log)

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Application Installation Size Increase (Lin)

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Runtime Adaptation Time

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Conclusions

GUIs can exhibit both static and dynamic variability, which
should be unified

Our updated work allows for full runtime adaptation of the
GUI

Implementation shows promising feasibility for GUI documents

Feasible to 10-12 dynamic binding units
Still room for optimisation.

Introduction & Recap Runtime Adaptation Implementation & Tests Conclusions

Q and A

Any questions?

	Introduction & Recap
	Runtime Adaptation
	Implementation & Tests
	Conclusions

