Presence-Condition Simplification: Problem, Solutions, Applications

Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk Beyer, and Thorsten Berger

University of Passau, Germany

Simplification

+ Thermodynamics + Friction + Turbocharging +

• This picture would be much more focused.

Presence Conditions

- In analysis reports
 - Verification
 - Type checking
 - Dataflow analysis
- In source code
 - #ifdefs

Specification 11 violated on condition encrypt && decrypt && keys && ((sign && verify && base && autoresponder) || (!sign && !verify && base && autoresponder))

```
    #if HCF_ASSERT
    ...
    #if (HCF_ASSERT) & (HCF_ASSERT_LNK_MSF_RTN |
```

- HCF_ASSERT_RT_MSF_RTN)
- MSF_ASSERT_RTNP IFB_AssertRtn;
- 6 #endif
- ·...
- 8 #endif
- In internal code representations
 - Variability-aware AST in TypeChef

Presence-Condition Simplification

Presence Condition

Specification 11 violated on condition encrypt && decrypt && keys && ((sign && verify && base && autoresponder) || (!sign && !verify && base && autoresponder)) Context

VariabilityModel = base $\Lambda(\text{decrypt} \Leftrightarrow \text{encrypt})\Lambda(\text{sign} \Leftrightarrow \text{verify})$ $\Lambda(\text{encrypt} \Rightarrow \text{keys})\Lambda(\text{sign} \Rightarrow \text{keys})$

simp (Presence Condition, Context)

Specification 11 violated on condition VariabilityModel && (encrypt && autoresponder)

Scenario 2: Variability Model Synthesis

- VM synthesis [She, ICSE11] generates models from expressions
- Problem: eliminating redundant facts from CTC
- Solution:
 - Presence condition := cross-tree constraints
 - Context := hierarchy constraints

Formal Problem Definition

- Given a presence condition p and its context m:
 (both given as boolean expressions)
- we seek x = simp(p, m) such that
 - 1. $m \rightarrow (x \equiv p)$

If m holds, we can replace p by x.

2. x should be "smaller" than p.

We define the size of an expression as the number of its operators.

Solutions

- RESTRICT (Coudert & Madre, 1989)
 - Based on binary decision diagrams
 - Heuristic to minimize the node count in the BDD
 - DAG traversal / comparison
- Two-level logic minimization (1980s)
 - Input: an expression and a don't care set DC
 - DC states for which variable assignments we don't care about the value of x
 - Our don't care set is $\neg m$
 - QUINE-MCCLUSKEY (1956)
 - ESPRESSO (1986)

Experiments

- E1 "Classification of Variants"
 - Presence conditions from Norbert's ICSE12 paper
- E2 "Defect-Location Reporting"
 - Presence conditions from Sven's ICSE13 paper
- E3 "Code Simplification"
 - 21 #ifdef projects
 - Almost no condition-simplification potential
- E4 "AST Simplification"
 - Presence conditions from TYPECHEF AST for Linux kernel
- E5 "Scaling" with VM synthesis
 - Generated variability models from SPLOT
 - Models with 20 to 90 options

#include(stdio.h)
#define max 10
void main()
{
int a=5;
#ifdef max
printf("%d",a);
#endif
}

E1 "Classification of Variants"

E5 "Scaling"

Care-set: DNF-clauses needed to express $p \land m$ and $\neg p \land m$ Can increase with larger variability models

Conclusion

Presence-condition simplification

- has many application scenarios (reporting, code conditions, ...)
- is effective

(can make conditions much smaller)

is efficient

(fast as long as conditions/contexts can be expressed in BDDs)

- Future work
 - Other application scenarios
 - Specialized algorithms?

Specification 11 violated on condition encrypt && decrypt && keys &&

((sign && verify && base && autoresponder) ||

(!sign && !verify && base && autoresponder))

Christian's Application? "Order of Feature Interactions"

Presence Condition

Context

Bug-triggering condition (e.g. Linux) Variability model \land other global conditions

VariabilityModel = base $\Lambda(\text{decrypt} \Leftrightarrow \text{encrypt})\Lambda(\text{sign} \Leftrightarrow \text{verify})$ $\Lambda(\text{encrypt} \Rightarrow \text{keys})\Lambda(\text{sign} \Rightarrow \text{keys})$

simp (Presence Condition, Context)
Heuristics!

Specification 11 violated on condition VariabilityModel && (encrypt && autoresponder)

count variables in simplified condition 2 variables left -> 2-way interaction