

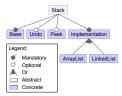
Family Mining on Statecharts

Master's thesis ideas

David Wille, May 5, 2014

- Motivation
- Background
- Current approach
- Ideas

Identifying differences and commonalities is crucial!



Family Models vs. Feature Models

Feature Models

- problem domain
- only models variability
- without further details

Family Models

- solution space
- concrete design
- implementation details

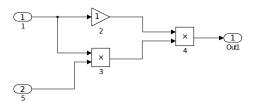


Figure 1: Variant 1

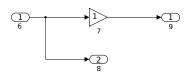


Figure 2: Variant 2

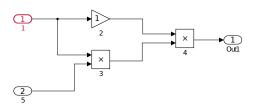


Figure 1: Variant 1

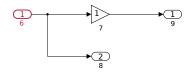


Figure 2: Variant 2

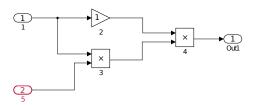


Figure 1: Variant 1

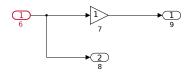


Figure 2: Variant 2

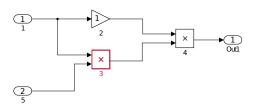
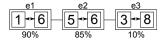



Figure 1: Variant 1

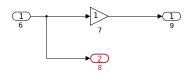


Figure 2: Variant 2

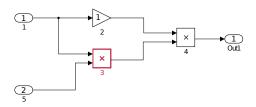
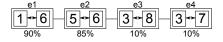
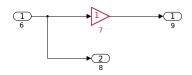
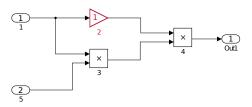
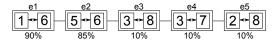
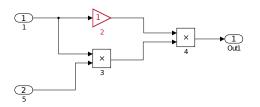



Figure 1: Variant 1


Figure 2: Variant 2



7 9

Figure 2: Variant 2

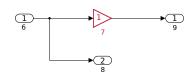
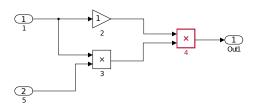



Figure 2: Variant 2

Figure 1: Variant 1

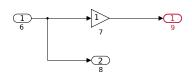
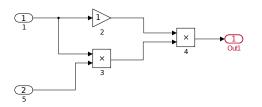
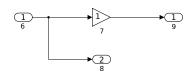
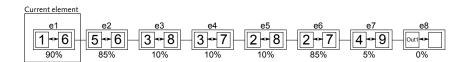



Figure 2: Variant 2

Figure 1: Variant 1

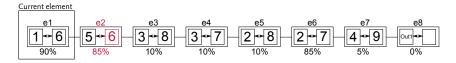
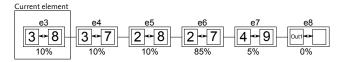
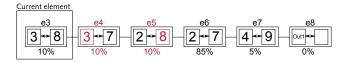
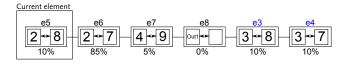

Figure 2: Variant 2

Figure 1: Variant 1

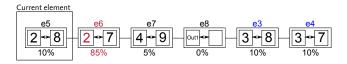


Found element e2 with same block, but less similarity. So e1 is optimal.

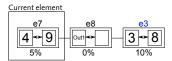




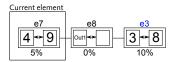
Found element e4 and e5. All have similarity of 10% so e3 and e4 are ambiguous.

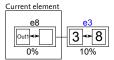


Sorted e3 and e4 to the end of list.



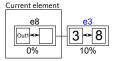
Found a better match. e6 > e5.





No better match found. e7 is optimal.

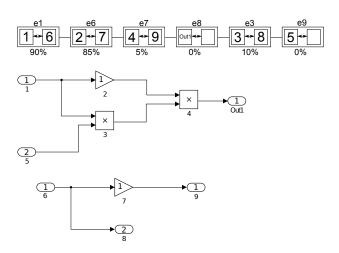
$$\begin{array}{c|c}
e1 & e6 \\
\hline
1 & 6 & 2 & 7 \\
\hline
90\% & 85\% & 6
\end{array}$$

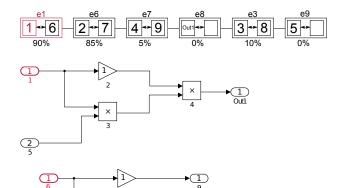


No better match found. e8 is optimal.

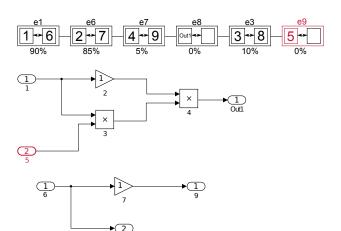
$$\begin{array}{c|c} e1 & e6 & e7 \\ \hline 1 - 6 & 2 - 7 & 4 - 9 \\ \hline 90\% & 85\% & 5\% \end{array}$$

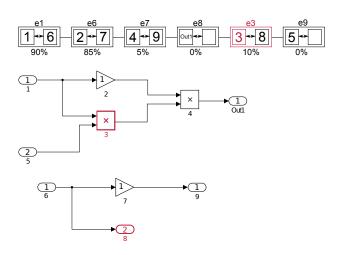
No better match found. e3 is optimal.

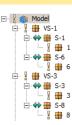


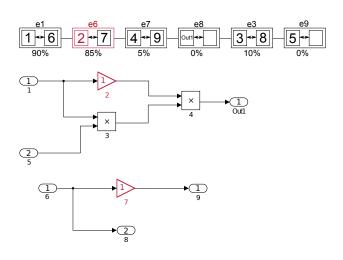


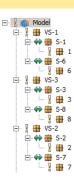
Block 5 was not yet considered, so it is an optional block.

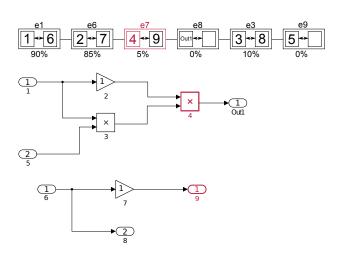


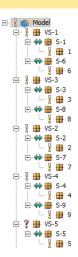


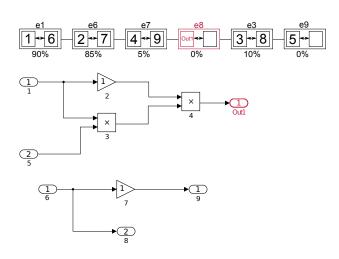












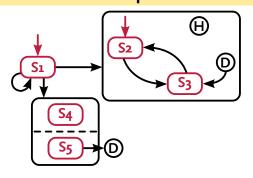
Summary

What has been done?

- Approach applied to MATLAB/Simulink models
- Create family models:
 - Understand relations between compared models
 - Improves maintainability of models

Current work

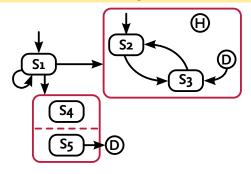
- Validation of the approach with industrial scale models:
 - The general approach, the metric, ...
- Logging for large models
- Refactoring in order to support multiple block-based languages:
 - e.g., MATLAB/Simulink, CoDeSys, ...


Analysis

- Analyze statechart representations of the following tools:
 - Esterel Technologies SCADE
 - Math Works Stateflow
 - ETAS ASCET
 - IBM Rational Rhapsody
- Also consider the journal article by Harel¹

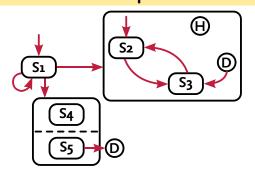
¹David Harel, Statecharts: a visual formalism for complex systems, 1987

States


- Represented as a box
- Name is distinctive
- State actions:
 - e.g., entry, exit, during, ...
 - in SCADE defined by block-based models

Start States

- Different notations:
 - Marked with "S"
 - Default transition

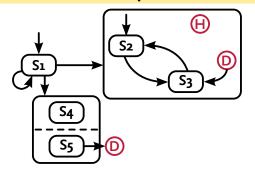


Special States

- Hierarchical states
- Parallel states

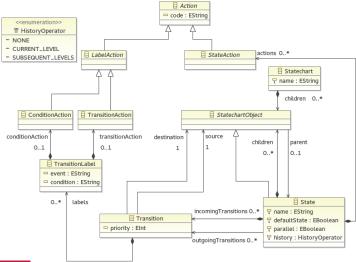
Transitions

event [condition] / action


- event: triggering the transition
- condition: e.g., x < 2
- \blacksquare action: e.g., x = 2

Special Transitions

- Self-Loops
- Junctions
- Spontaneous transitions


Special concepts

- History junctions
- Diagram connectors "goto"
- Forks / Joins for parallel states

Create a Meta-Model

Identified challenges

No distinct attributes

- Names can change
- All elements have the same type ("state") in contrast to Simulink with different types (e.g., Gain, Sum, Product, ...)
- Vocabulary can change between models (e.g., different names for the same event)
- Actions are defined by code and not by unique block types
- \Rightarrow Find a way to compare ambiguous elements and identify relations

Next steps: Approach & Evaluation

Metric

- Find a suitable metric to identify the variability of:
 - States
 - Transitions
- Should work with hierarchies and differing interfaces

Approach

- Find an approach with following requirements:
 - Efficient (preferably no $n \times m$ comparison)
 - Correct (i.e., meeting the stakeholders' expectations)
- Should work with all identified concepts

Next steps: Approach & Evaluation

Evaluation

- Extend the architecture generator developed at the ISF to generate
 - ... different related statecharts.
 - ... statecharts with differing complexity and size.
- Use the generated statecharts to evaluate the results of the approach

Thank you for your attention!

