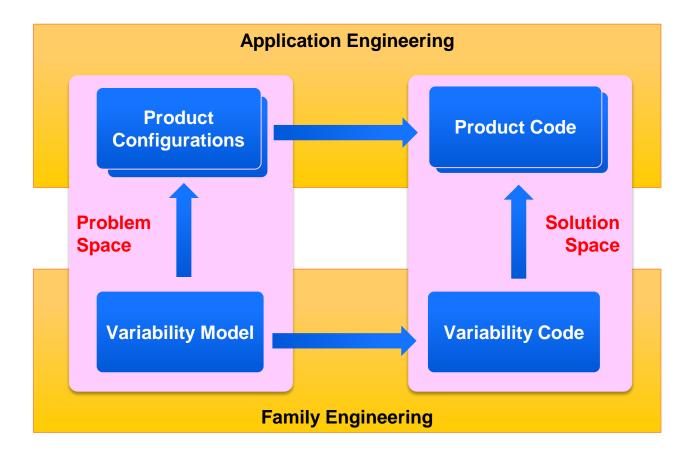
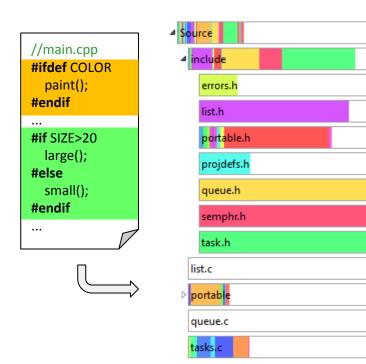
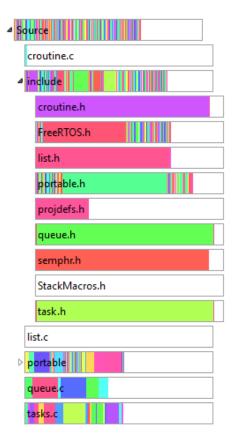
FOSD Meeting 2014



VITAL: Variability Improvement Analysis of Software Product Line Infrastructure

Bo Zhang


University of Kaiserslautern Kaiserslautern, Germany bo.zhang@cs.uni-kl.de



An Example of Product Line Evolution

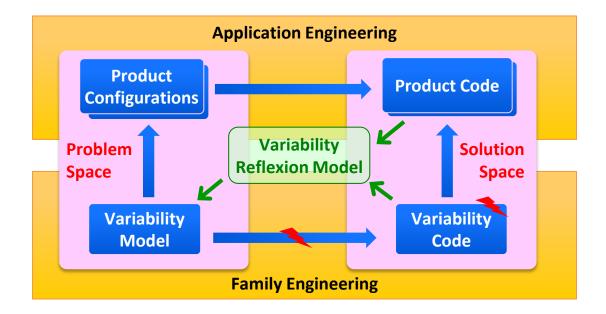
FreeRTOS	v2.4 (2004.07)	v5.2 (2009.03)	v8.0 (2014.02)
# Vars	21	156	296
# VPs	52	503	1088
Var Code Size	627 LOC	3480 LOC	9461 LOC
# Var Files	19	108	172

4 Source
croutine.c
event_groups.c
⊿ include
croutine.h
event_groups.h
FreeRTOS.h
list.h
mpu_wr <mark>appers.h</mark>
portable.h
projdefs.h
queue.h
semphr.h
StackMacros.h
task.h
timers.h
list.c
▷ portable
queu <mark>e.c</mark>
ta <mark>sks.c</mark>
<mark>tim</mark> ers.c

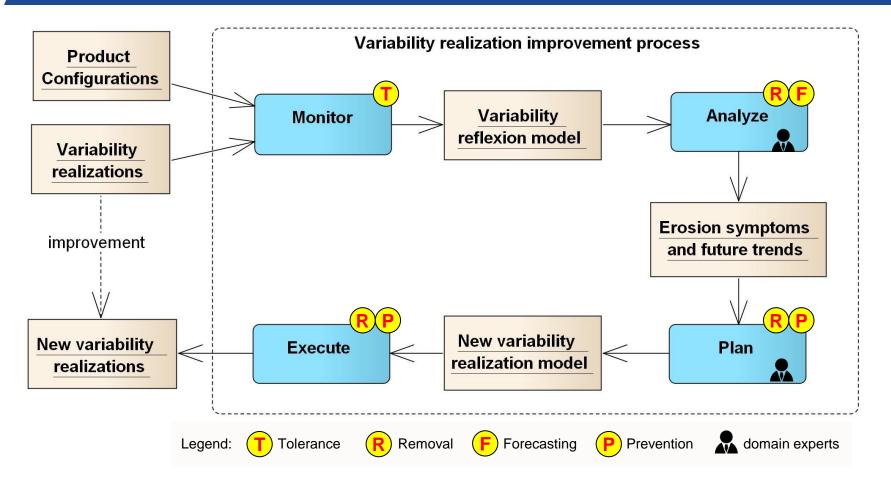
visualized by Feature Commander [FC]

Problem

variability code erosion


Variability code becomes hard to understand and maintain

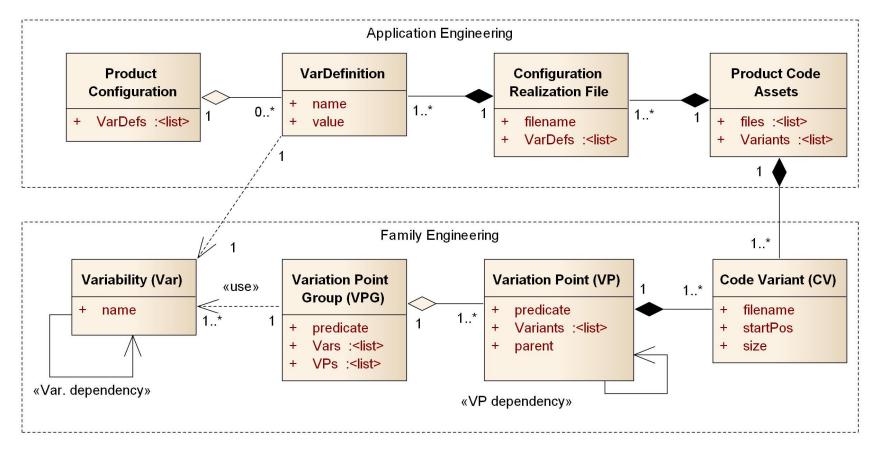
Solution Idea


VITAL: <u>Variability Improvement Analysis</u>

- Automated extraction of variability reflexion model
 - Analyzing C Preprocessor Code
 - > Extracting variability code elements and their interdependencies
- Identifying variability code erosion symptoms
- Further countermeasures against variability code erosion

Variability Realization Improvement Process

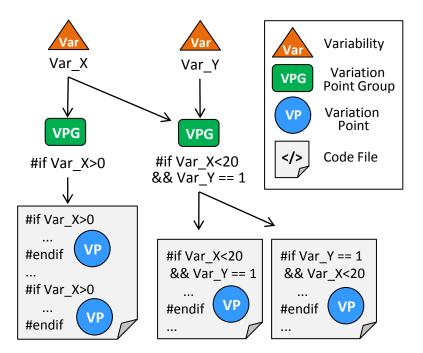
Main contribution in **Monitor** and **Analyze**



Challenges	Tactics	Description	Туре
Current	Tolerance	To understand (eroded) variability realizations without changing anything.	analytical
erosion	Removal	To identify and fix eroded elements in existing variability realizations.	reactive
Future	Forecasting	To predict future erosion trend and their likely consequences.	analytical
erosion	Prevention	To avoid erosion in future variability realizations.	proactive

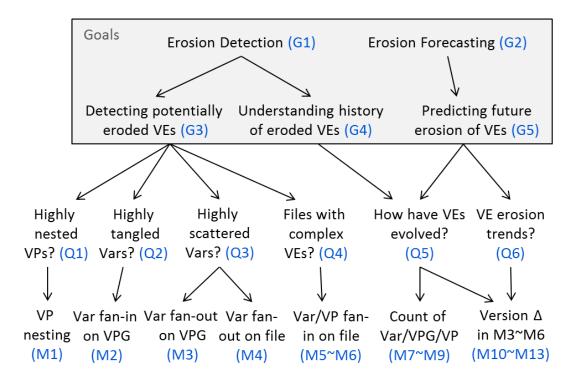
Monitor

Extracting Variability Reflexion Model



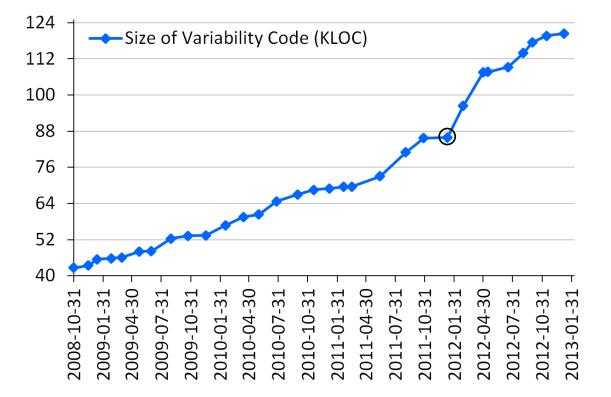
Core of Variability Reflexion Model

Variability Code Elements


- ✤ Variability (Var)
 - representing a variable feature
- Variation Point (VP)
 - including Code Variants (CV)
- ♦ Variation Point Group (VPG) < </p>
 - a group of VPs with equivalent logic for selecting CVs
 - > Mapping problem space and solution space

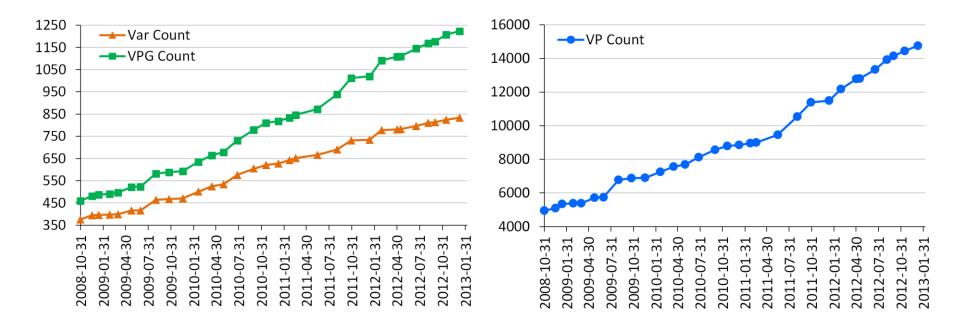
Variability Code using Conditional Compilation

Erosion Detection and Forecasting



An Industrial Case Study of Erosion Detection and Forecasting [SPLC'13]

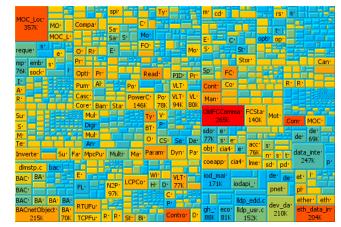
Danfoss SPL: 31 versions along 4 years

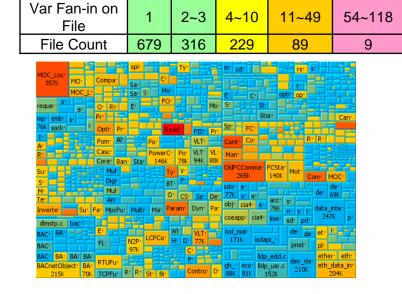

- Feature modeling was introduced from 2012.01
- Some automatically generated files are excluded since they are not maintained manually

An Industrial Case Study of Erosion Detection and Forecasting [SPLC'13]

The last release contains

- ✤ 834 Vars
- 1223 VPGs
- ✤ 13969 VPs
- 1322 variability-related files

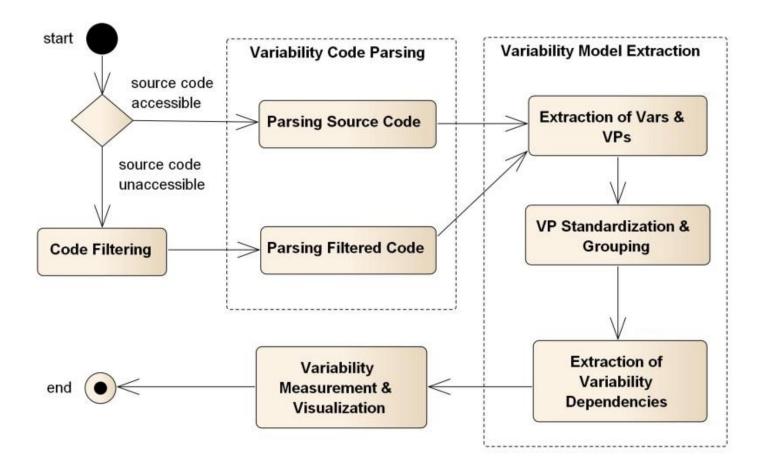



Detected Erosion Symptoms

- ✤ VP nesting
- Var Tangling
 - > Var Fan-in on VPG
- Var scattering
 - Var Fan-out on VPG
 - Var Fan-out on File
- Complex files
 - Var Fan-in on File
 - > VP Fan-in on File

Nesting Level	1	2	2	3	3	4	5	
VP Count	7988	50	82	83	3	64	2	
Var Fan-in on VPG	1	2	2	3	3	4	7	11
VPG Count	1010	18	35	2	2	4	1	1
Var Fan-out on VPG	1	2		3~5		6~9	13~1	18
Variability Count	548	188		70		23	5	
Var Fan-out on Files	1	2	3~	·10	11	~46	54~144	4
Variability Count	247	191	2	78	1	05	13	

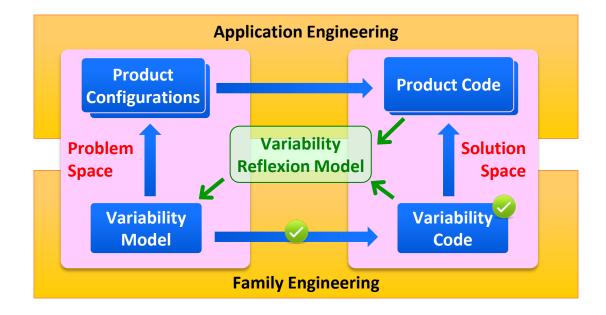
VP Fan-in on File	1	2~3	4~10	11~50	51~407
File Count	385	291	326	273	47


Erosion Forecasting

- e.g., predicting erosion trend of Var scattering on VPGs (Var Fan-Out on VPG)
- Trend := #rises #falls, indicating probability of future increase of Var fan-out on VPG
 - ➤ E.g., trend of 1st Var = count(7-6, 13-7, 17-13, 18-17) 0 = Count(1, 6, 4, 1) = 4
- ↔ Predicted value (version 32) := base value (version 31) + Avg(positive Δs)
 - E.g., predicted value of 1st Var = 18+ Avg(1, 6, 4, 1) = 18+3 = 21

Var Fan-Out on VPG	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Trend	32*
HAS_FEATURE_CASC	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	13	17	17	17	18	18	18	18	18	18	18	4	21
HAS_FEATURE_PRO																								9	13	13	14	15	15	16	16	4	17.8
HAS_FEATURE_PRO																									9	9	12	13	14	16	16	4	17.8
HAS_FEATURE_MUL	6	6	6	6	6	8	8	8	8	8	8	10	10	10	10	10	10	10	10	10	13	13	13	13	13	13	13	13	13	13	13	3	15.3
HAS_FEATURE_SUPF														1	3	3	3	3	3	4	4	8	8	8	8	8	12	12	12	12	13	5	15.4
HAS_FEATURE_PRO											2	2	2	2	2	2	2	2	2	2	2	2	2	8	8	8	9	9	9	9	9	2	12.5
HAS_FEATURE_PROI	9	9	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	7	7	8	8	9	9	9	9	9	9	9	9	9	9	0	10
HAS_FEATURE_SUPF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	9	9	1	17
HAS_FEATURE_BAC					5	5	5	5	5	5	5	5	5	5	5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	1	11
HAS_FEATURE_PRO																								6	6	6	7	7	7	8	8	2	9

VITAL Tool Support


For variability realization analysis and improvement

Conclusion

VITAL approach can improve Variability code maintainability

- Erosion Tolerance: done
 - variability reflexion model extraction
- Erosion Removal
 - erosion detection done
 - erosion fixing not validated
- Erosion Forecasting: done
- Erosion Prevention: not validated

[ALR+04] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, "Basic concepts and taxonomy of dependable and secure computing," Dependable and Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11-33, Jan. 2004.

[LA+ 10] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, "An analysis of the variability in forty preprocessor-based software product lines," in Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ser. ICSE '10. New York, NY, USA: ACM, 2010, pp. 105-114.

[PB+12] T. Patzke, M. Becker, M. Steffens, K. Sierszecki, J. E. Savolainen, and T. Fogdal, "Identifying improvement potential in evolving product line infrastructures: 3 case studies," in Proceedings of the 16th International Software Product Line Conference - Volume 1, ser. SPLC '12. New York, NY, USA: ACM, 2012, pp. 239-248.

[ICPC'12] B. Zhang, "Extraction and improvement of conditionally compiled product line code," in *Program Comprehension (ICPC),* 2012 IEEE 20th International Conference on, June, pp. 257-258.

[MAPLE'12] B. Zhang and M. Becker, "Code-based variability model extraction for software product line improvement," in *Proceedings of the 16th International Software Product Line Conference - Volume 2*, ser. SPLC '12. New York, NY, USA: ACM, 2012, pp. 91-98.

[PLEASE'13] Bo Zhang, Martin Becker. RECoVar: A Solution Framework towards Reverse Engineering Variability. Proceedings of the 4th International Workshop on Product LinE Approaches in Software Engineering (PLEASE 2013), Page 45-48. San Francisco, USA. 20 May, 2013.

[SPLC'13] Bo Zhang, Martin Becker, Thomas Patzke, et al. Variability Evolution and Erosion in Industrial Product Lines - A Case Study. Proceedings of the 17th International Software Product Line Conference (SPLC 2013). Tokyo, Japan. August 26-30, 2013.