
1 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

SCADE Training -
SCADE Suite Design Verifier

2 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Training Program

Introduction

Getting started with SCADE Suite Design Verifier

Writing properties

Verification with data

Design Verifier Methodology

3 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Training Objectives

Learn how to integrate formal verification into your SCADE Suite
development process

Perform formal verification on your SCADE design with Design Verifier

Training Exercises and getting used to the Design Verifier

4 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

INTRODUCTION

5 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The Picture

Increasing importance of information technology in modern industrial
systems:
• Transports: avionics, automotive, train interlocking control, etc.
• Communication: Secure networking, telephone systems, protocols, etc.
• Energy: nuclear plants

 Safety and Mission Critical systems

6 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The Need for Correctness

System reliability increasingly depends on the correct functioning of
hardware and software

Errors, or BUGS, can be fatal and very costly
• Safety-critical systems (Avionics, Nuclear plants, etc.)
• Products subject to mass-production (Processors, Consumer electronics)
• Large systems (Telephone switching, Baggage handling at airports)

 Increasing effort in reactive system validation

7 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Classical Verification Techniques

System specification inspection and algorithms reviewing
• Static and manual techniques
 Ambiguous left parts of V cycle

Simulation & Testing
• Execute the design with some inputs and observe the outputs
• Input may be large, if not infinite.
 Coverage analysis required

Result and cost
• Reveal the presence of errors, not their absence
• 30 to 50% of project cost, may be more!
 Not exhaustive: bugs remain (corner cases)!

8 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The Verification Bottleneck

Increasing cost of the verification phase

Time effort tends to be much greater than time system construction

Catching bugs:

THE SOONER, THE BETTER

Specification verification

Implementation verification

9 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The Formal Verification Concept

Aim: Add mathematical reasoning into the verification processes

Goal: Reduce verification cost increasing system reliability

How: Add completeness to classical testing to detect uncovered bugs

Challenge: smooth and early integration in classical design methodologies

10 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The Formal Verification Recipe

Provide a mathematical representation of Program Models – A piece of Art!
• Mathematical model that characterizes the system behaviors and properties

Provide a set of mathematical techniques to check program properties –
Another piece of Art!
• Express the requirements as logical property formula
• Check the validity of the formula in the mathematical model

11 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The Formal Verification Problem

Does my design model fulfill all of its requirements?

Design Verifier helps you verify the safety requirements:
• “The elevator will never move while the doors are open”

Checking a property is finding a proof that the property always holds for any
execution of the design.

12 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Formal Verification in SCADE

A SCADE model is mathematically defined as a set of data-flow equations
with memory

truet
otherwisetCount

EventiftCount
tCountt

Count
=

−
+−

=>∀

=

)(
),1(

,1)1(
)(,0

0)0(

We can prove mathematically: for all t,
Count(t) always greater or equal than Count(t-1)

13 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Formal Verification in SCADE

Design Verifier is the module that automatically checks properties
• Solves Boolean problems over expression involving data and time (cycles)
• Uses SAT-based algorithms to solve the Boolean problems mixing different

theories (Boolean satisfiability with induction, decision procedures for data
equations solving, constraint solving, etc.)

• Yes/No answer to the question whether a given property always holds or not.

Complement to the verification by simulation activities

14 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Design Verifier

Verify that the software requirements respect the safety requirements

Express the properties using SCADE Suite

No test to write

Check the properties for all conditions and all possible executions

Particularly efficient for handling logic parts of the design (control flow,
decision logic, SSM)

Based on Prover SL™ engine from Prover Technology

15 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Design Verifier Features Summary

Early detection of bugs without writing tests

Checking high-level and low-level safety property requirements

Simple framework for property specification

Counter-example test generation for detected bugs

Automatic load of counter-examples in the Simulator for fast and efficient
debugging

16 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Successful Use of SCADE Design
Verifier

Properties proved on several real industrial projects
• Aerospace & Defense: flight control application, sensor voter algorithms
• Automotive: embedded applications. Non-trivial bugs found in some cases with

minimal length of tens of cycles
• Railways: started formal verification in current industrial projects

17 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

GETTING STARTED WITH
DESIGN VERIFIER

18 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

SCADE Suite Design Verifier Workflow
SCADE

Suite

Express properties and
context

Specify proof
objectives

Specify verification
strategy

Launch task
analysis

Examine analysis
results

Launch verification scenario
from reports

Done

Falsifiable?
Yes

No

Design model including
assertions

19 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Defining Properties

Identify the safety requirements in the software requirements

Focus on requirements addressing the logical and control flow aspects of
the design

Express the properties as SCADE Suite operators called observers
• “If A is true, then B must be true”
• “If X’s value is 0, then after 3 cycles B must be equal to 1”
• “Never A and B at the same time”

20 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Properties as SCADE Observers

A property is implemented in a SCADE operator called an Observer.
• As inputs, it receives the values the property focuses on.
• It has one output, which is true if and only if, the property is true

21 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

21

Exercise 01-1
Design model including assertions

1. Go to folder “Prerequisite\Exercise 01-1” and open the project
ValueCompare.vsw.

2. The Compare node: at each cycle
• If x is lower than 5, then A is true, else it is false
• If x is greater than 5, then B is true, else it is false

22 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

22

Exercise 01-1
Express properties and context

3. Verify the specification requirement
“A and B should never be both true in the same cycle”

4. Write a SCADE Suite Observer for the property
• Input: A, B
• Output: a Boolean flag that is true when (A and B) is false

5. Write a SCADE Suite operator CompareObserver that connects
the operators Compare and Observer

23 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

23

Exercise 01-2
Specify proof objectives and Launch task analysis

1. Declare the Boolean output
A_and_B_Property as a new
Proof Objective

2. Go to the Design Verifier
tab, right-click on the Proof
Objective and launch the
Proof analysis

24 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

24

Exercise 01-2
Examine analysis results

The property is found falsifiable;
a one-cycle length counter-
example is generated with x = 5.

Read or play the generated
counter-example in the Simulator

25 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Solving the Problem

Correcting a design error
• We should clearly say which of A and B is exclusively true when x = 5

Adding environment information
• We know that the environment will never provide x = 5 as a realistic value
• (“Exercise 1\Step 3” sub-folder)

26 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

26

Exercise 01-3
Correcting the Design

1. We decide that B is true
whenever x is strictly
greater than 5

2. Redo the
verification shows
that the property
always holds

x

5
A

B

_L1

_L2

_L4

_L5

_L2

_L1

27 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

27

Exercise 01-4
Adding information

2. Redo the
verification,
the property
is found valid

1. Add a SCADE
Suite assume to
mean that x is
different from 5

28 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

28

Exercise 01-5
Write another Property

1. From the original design, write a SCADE Suite Observer for the
requirement:

• “If A and B are both true, then x = 5”

2. Redo the verification

29 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

WRITING PROPERTIES

30 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

SCADE Suite Observers

Use the SCADE Suite language to write nodes whose output is Boolean, that
should always be true:

• Boolean logic:
⁻ Prop = (A and B) or not(C)

• Relational expressions
⁻ Prop =((X = 5) and (Y > 0)) or (Z > X/3)

• Temporal expressions
⁻ Prop = true -> not(pre(B and (X = 0))) or (Y = 1)

31 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

The SCADE Verification Library

To help the writing of properties

4 patterns
• AlwaysAfterFirstCond
• AtLeastNTick
• HasNeverBeenTrue
• Implies

2 families of patterns
• AfterNthTick
• ImpliesWithinNTick

32 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Pattern: AlwaysAfterFirstCond

Equal to its input Input1 once Cond becomes true. True before that time.

Cycle 1 2 3 4 5 …
Cond false false true * * *

Input1 false false false true true false

Output1 true true false true true false

Input1Input1

CondCond
Output1Output1

1

verif::AlwaysAfterFirstCond

33 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

AlwaysAfterFirstCond: Example

The satellite wings should always remain deployed after 10 cycles after
expulsion

ExpulsedExpulsed

SolarWingsDeployedSolarWingsDeployed

ElapsedAfterExpulsionElapsedAfterExpulsion

2

verif::AlwaysAfterFirstCond PropertyProperty

10

34 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Pattern: AtLeastNTicks

Equal to its input condition each time this condition has been true N times.
False before that and each time its input condition is false.

Cycle 1 … 4 5 6 7 10 11
Input1 true true true false true … true true

Output1 false false false true false false false false true

Input1Input1 Output1Output1

1

verif::AtLeastNTicks

5

35 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

AtLeastNTicks: Example

If RightButton is pressed during 5 cycles then Menu is popped up until
RightButton is not pressed anymore

MenuPoppedUpMenuPoppedUp

RightButtonRightButton

2

verif::AtLeastNTicks

PropertyProperty

5

36 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Pattern: HasNeverBeenTrue

Becomes false as soon as its input turns to true first time. True before that
time.

Cycle 1 2 3 4 5 …
Input1 false false true true * *

Output1 true true false false false false

1

verif::HasNeverBeenTrueInput1Input1 Output1Output1

37 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Pattern: Implies

Commonly used predefined node logical patterns: e.g. “Implies” ()

“If A is true then B is true”:

not(A)or B = A B

A B Out

true true true

true false false

false true true

false false true

AA

BB
OutOut

1

verif::Implies

38 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Family Pattern: AfterNthTick

Always equals to its input condition after N cycles. True before that.

Cycle 1 2 3 4 5 …
Input1 true false false true true false

Output1
(N=2)

true true false true true false

false

true

true

FBY
N

Output1Output1
Input1Input1

Input1Input1 Output1Output1

1

verif::AfterNthTick<<2>>

39 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Family Pattern: ImpliesWithinNTick

Output1 is “Input1 implies Input2” when Input1 has been true N times. True
before that.

Input1Input1

Input2Input2
Output1Output1

3

1

verif::AtLeastNTicks

1

verif::Implies

40 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

40

Exercise 01-6
Using a Property Pattern

1. Re-write the property of Exercise 01-5 using the Implies pattern

2. Redo the verification

41 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

VERIFICATION WITH DATA

42 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Arithmetic Expressions

Supported data-types:
• Booleans
• Integers
• Fixed-size integers (expressed in bit size)
• Rational numbers

Operations
• All Boolean operators (not, and, or, etc.)
• All arithmetic operators (+, -, *, /, %, etc.)
• All relational operators (=, <, >, <=, >=, etc.)
• Linear arithmetic only

43 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Supported Arithmetic

Integer arithmetic: multiplication with at most one variable

Rational arithmetic: multiplication and division with at most one variable

Trigonometric and power (exponential as well) functions are not rational
functions. This is the reason why they are not supported.

Supported Not supported
5*X + Y
Z/2.0 – W
(T%3) * 2

X*Y + 1
Z div (if X=0 then 1 else X) + 5
(W%P) * 3

44 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

44

Exercise 02
Solving Equations

1. Linear equation system

2. Use Design Verifier to solve the system
• Try with a=2, b=4, c=5, d=10, e0=6, e1=15
• Find X and Y using Design Verifier
• Steps:

o Model the equation system
o Model a property to find out a solution

45 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Real Numbers

Classical gap between mathematical real numbers and their floating-point
implementation

Since floating-point implementation approximates the real numbers
• A proven property by Design Verifier can be falsified in the Simulator
• A falsifiable property by Design Verifier may not be so in the Simulator

Problem occurs when some comparison involve a real number
• Boolean values computed out of real numbers arithmetic can differ between the

model and the implementation

46 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

46

Exercise 03

1. Input: X,Y constant real numbers with X < Y

2. Load the Prerequisite\Exercise03\Zeno.xscade
SCADE design that computes:
• R(0) = X
• R(t) = R(t-1) + ((Y – R(t-1)) / 2)

3. Write and analyze the property
• For all cycle t, (X < Y) implies (R(t) < Y)

4. Simulate the design for a certain number of cycles
• What do you find out?
• Conclude

47 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

47

Exercise 04
Verifying a Sorting Algorithm

1. Open the project in Prerequisite\Exercise 4\Sort.etp

2. The Sort operator sorts by increasing order an array of N values
given as input and produces the result in an output array

3. Verify with Design Verifier that the Sort operator is correct
• Define the property for N=5
• Increase N
• Conclude

48 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

48

Exercise 05
Verifying a FIFO

1. Open the project in Prerequisite\Exercise 5\Fifo.etp

2. The FifoController operator models a FIFO

3. Verify with Design Verifier that the following properties of a
FIFO
• Overflow and Underflow detection
• Bypass is performed correctly

49 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

COMPLEXE ARITHMETIC
AND IMPORTED FUNCTIONS

55 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

DESIGN VERIFIER METHODOLOGY

56 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Design Verifier Strategies

Two generic strategies:
• Debug: Ask the Design Verifier whether the property is falsifiable within some

fixed number of execution cycles. If yes, a counter-example is found quickly and
generated for simulation.

• Proof: Ask the Design Verifier whether the property is always valid. If so, the
property may be found valid. If not, a counter-example may be found. The result
is indeterminate if the property cannot be proven.

 How to use the Design Verifier strategies?
What to do when the result is
indeterminate?

57 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Software Design
with SCADE SuiteTM

Strategy Usage

Time

Bugs

Delivery for code
generation

Debug
Proof

Manual testing
verification
Design Verifier:

Verification with SCADE SuiteTM

58 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Setting Strategies (1/2)

Default strategy for proof objectives is the Prove strategy
• Select a proof objective and display its properties.

59 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Setting Strategies (2/2)

To define a new strategy, e.g. a Debug strategy, right-click on the Strategies
folder

Give the strategy a name, e.g. My Debug

Right-click on the new strategy to display its properties and choose the
Debug strategy type

60 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Strategies’ Common Options

Timeout: amount of time in second allowed for analyzing the property (0:
no timeout)

Integer size: bound on integer value expressed in number of bits for integer
size (-1: no bound).

61 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Debug-Strategy’s Options

Start depth: cycle number at which the analysis starts. Default 0.

Stop depth: cycle number at which the analysis stops. Default 100

62 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Strategy Usage

Use the Debug strategy in the early phase of design

Use the Proof strategy in the final phase

Benefits:
• Find bugs quickly, detecting soon specification ambiguities and problems
• Prove the correctness of the design with respect to the system requirements
• High confidence in the design
• Reduced verification cost

 But what do I do when I get indeterminate
results ?

63 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Debug Strategy Indeterminacy

Search for a bug up to a bounded number of execution cycles

Indeterminacy means that no bug exists up to the bound

Three cases:
• The bug is deeper: increase the bound
• There is no bug: try the proof strategy

64 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Coping with Indeterminacy

Indeterminacy means in fact that Design Verifier could not prove the
property because too hard to find.

Problem Way to solution

Large data-path
domains

Add environment constraints
(SCADE Suite assertions)

Non-linear expressions
in data-path

Abstract non-linear constructs
into linear forms (e.g sin as
[-1,1], look-up table, etc.)

Note: When using the Induction strategy, Indeterminacy means that the problem is
not "inductive", even if the model is simple and linear.

65 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

LABS

66 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

La
b

66

Case Study: Step 1

1. We want to verify that:
• When the Brake pedal is pressed (> PedalMin), the Cruise

control must be in Interrupt or Off state

2. Create a new project CruiseControlProof for Design Verifier
inserting
Prerequisite\Lab\CruiseControl\CruiseControl\CruiseControl.etp
project

3. Create in a package ProofPkg, an operator Observer to verify the
property.

4. Create an operator BrakeProperty where you plug the
CruiseControl node with Observer node. Create the Proof
Objective and analyze it

67 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

La
b

67

Case Study: Step 2

1. Explain the result if falsifiable

2. Find a solution to fix the problem

68 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Exercises Solutions

69 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

69

Exercise 01-1

Compare

x

Observer

Property

Property

A

B

70 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

70

Exercise 01-5

Compare

x

Observer

Property

Property

A

B

5

x 1

1

1

71 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

71

Exercise 01-6

Compare

x

Observer

Property

Property

A

B

5

x 1

1

verif::Implies

72 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

72

Exercise 2

Z0

Z1

1

Equation

2

Equation

X

Y

a

b

c
d

Y

Z

X

c0

c1

System

e0

SolutionExist

X

Y e1

73 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

73

Exercise 3

Zeno

Property
verif::Implies

X
Y

Y

AddHalfDiff
r

PRE

Y

X

74 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

74

Exercise 4

IsSortedProperty
true

fold<<4>>amap<<4>>

1 4

0 3

RealArray OutRealArray Int

1

Sort::Sort<<5>>

75 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

75

Exercise 5

Read

Ov erf lowProperty

1

Fif oPkg::
Ov erf lowProperty

By PassPropertyInValue

Write

Read
1

Fif oPkg::
By PassProperty

1

Fif oController

Read

Property

OVERFLOW

1

v erif ::Implies

Write

FULL

 last 'Status

Status

EMPTY

Status

OutValue

InValue

Write

Read

Property

1

v erif ::Implies

76 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Labs Solutions

77 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

La
b

77

Case Study: Step 1

1

CruiseControl::CruiseControl

On

Off

Resume

Set

QuickAccel

QuickDecel

Accel

Brake

Speed

1

Observer
Brake

Property

Brake

CruiseState

1 1

verif::Implies

CruiseControl::OFF

CruiseControl::INT

1

2

1

PropertyCruiseControl::PedalsMin

78 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

La
b

78

Case Study: Step 2

Cruise Control Fixed

79 © 2015 ANSYS,
Inc.

April 2, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

	SCADE Training -�SCADE Suite Design Verifier
	Training Program
	Training Objectives
	Introduction
	The Picture
	The Need for Correctness
	Classical Verification Techniques
	The Verification Bottleneck
	The Formal Verification Concept
	The Formal Verification Recipe
	The Formal Verification Problem
	Formal Verification in SCADE
	Formal Verification in SCADE
	Design Verifier
	Design Verifier Features Summary
	Successful Use of SCADE Design Verifier
	Getting Started with �Design Verifier
	SCADE Suite Design Verifier Workflow
	Defining Properties
	Properties as SCADE Observers
	Exercise 01-1�Design model including assertions�
	Exercise 01-1�Express properties and context
	Exercise 01-2 �Specify proof objectives and Launch task analysis�
	Exercise 01-2 �Examine analysis results�
	Solving the Problem
	Exercise 01-3�Correcting the Design
	Exercise 01-4�Adding information
	Exercise 01-5�Write another Property
	Writing Properties
	SCADE Suite Observers
	The SCADE Verification Library
	Pattern: AlwaysAfterFirstCond
	AlwaysAfterFirstCond: Example
	Pattern: AtLeastNTicks
	AtLeastNTicks: Example
	Pattern: HasNeverBeenTrue
	Pattern: Implies
	Family Pattern: AfterNthTick
	Family Pattern: ImpliesWithinNTick
	Exercise 01-6�Using a Property Pattern
	Verification with Data
	Arithmetic Expressions
	Supported Arithmetic
	Exercise 02�Solving Equations
	Real Numbers
	Exercise 03
	Exercise 04�Verifying a Sorting Algorithm
	Exercise 05�Verifying a FIFO
	Complexe Arithmetic �and Imported Functions
	Design Verifier Methodology
	Design Verifier Strategies
	Strategy Usage
	Setting Strategies (1/2)
	Setting Strategies (2/2)
	Strategies’ Common Options
	Debug-Strategy’s Options
	Strategy Usage
	Debug Strategy Indeterminacy
	Coping with Indeterminacy
	LABS
	Case Study: Step 1
	Case Study: Step 2
	Exercises Solutions
	Exercise 01-1
	Exercise 01-5
	Exercise 01-6
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Labs Solutions
	Case Study: Step 1
	Case Study: Step 2
	Diapositive numéro 79

