
1 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

SCADE TRAINING

SCADE Suite Compiler Verification Kit

2 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

AGENDA

Introduction to the strategy for developing CVK

Verification process of SCADE Suite development environment

CVK product overview

Adapt CVK to cross platform and targe

Exercise: CVK execution on a host platform

3 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

How to develop CVK ?

4 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Strategy for Developing CVK

The Esterel Technologies R&D has performed following steps:

• Identify the C elementary constructs generated with KCG:
– By analyzing the KCG software requirements - High Level and Low-Level

Requirements (HLR and LLR)
• Define relevant complexity metrics for KCG-generated code:

– By analyzing compilers limits defined in C standards (ANSI, ISO) and
compilers documentation

• Identify the combination of elementary C constructs generated by
KCG that make sense in the compiler verification
– Combinations directly based on complexity metrics previously identified
– Objective to cover a finite set of combinations with a high level of

complexity

5 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Strategy for Developing CVK

• Build the C sample:
– A suite of Scade samples, covering all Scade constructs, built as material

for C code generation
– Each elementary C construct and its combination, generated from Scade

samples root nodes with appropriate KCG options
– Coverage of this C subset by the C sample, required and verified

• Develop a test harness, exercising the C sample with input vectors and
verifying that output vectors conform to the expected ones

• Test execution on a host platform to verify:
– Conformance of outputs to the expected ones
– Modified Condition/Decision Coverage (MC/DC) coverage at a C code level

• Test execution for each selected target platform to verify:
– The adaptation to a CVK specific cross-environment capabilities

(portability)
– The correctness of effective output vectors on this platform

6 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Strategy for Developing CVK

7 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

What is CVK ?

8 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Definition

Does not validate the C compiler or processor

Not an executable software and not a tool

Developed for the verification of a
development environment containing KCG

Supports early verification of the correctness
and consistency between the development
tools chain and the target platform

Addresses the verification of target
compatibility with the architecture and LLR
contained in SCADE models

A tests suite whose purpose is to verify that a compiler
correctly compiles code generated by SCADE Suite KCG

9 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

KCG and CVK Role

• KCG qualification
ensures that
Source Code
conforms to LLR
developed with
SCADE Suite

• CVK checks that
the C compiler
correctly
compiles the C
code generated
by KCG

User Development Project (SCADE Suite)

KCG CompilerC code
Object
code

Integrate KCG
in the

Certification process
Verify Compiler using CVK

KCG
Certification
Kit

Compiler
Verification

Kit

User Environment Qualification

SCADE Suite
Model

10 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

KCG and CVK Role

Verification activities to be performed by the applicant, on
the basis of the CVK C-sample

• Generating C Source Code from CVK SCADE model and comparing
with reference C-sample

• Compiling/linking/loading the C Source Code on target
• Running the test cases on target and verifying that expected results

are obtained

11 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

What is the method underlying the
use of CVK in the verification of

development environment ?

12 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK IN SCADE SUITE DEVELOPMENT
VERIFICATION

SCADE SUITE DEVELOPMENT FLOW
COMBINED TESTING PROCESS
VERIFICATION USING CVK

13 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

SCADE Suite Development Flow

• Developing with SCADE
Suite editor, the
Software Requirements
down to a level where
they can be coded (LLR)

• Coding performed
automatically with
KCG, the qualifiable
code generator

14 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK IN SCADE SUITE DEVELOPMENT
VERIFICATION

SCADE SUITE DEVELOPMENT FLOW
COMBINED TESTING PROCESS
VERIFICATION USING CVK

15 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Combined Testing Process (CTP)

In a traditional development process, testing mixes the
search for design, coding and compilation errors

Traditional Testing Process
(without SCADE)

16 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Combined Testing Process (CTP)

CTPGenerated by
KCG

Optimization by CTP of the testing effort, using a divide-and-
conquer approach for the Software part (SW) developed with
SCADE tools

17 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CTP

Benefits from KCG qualification and from the
characteristics of the generated code:
• Conformance of the SCADE LLR to the HLR

– Verified at the model level, by review and a combination of HLR-based testing on
host and on target platforms
• Using SCADE LifeCycle Testing Environment tool (TE)
• Using Model Test Coverage verifying the coverage of SCADE LLR by the HLR-based test cases

• Conformance of the Source Code to the SCADE LLR
– Ensured by KCG qualification

• Verification of “source code to object code transformation” by the compiler
– Verified by analysis and low-level testing, with MC/DC structural code coverage:

• For the complete C hand-written code
• On a representative sample of the generated code, named “C sample”, which is contained in

CVK

18 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CTP

Combined testing on the host platform
• Executes all test cases that can be done on the host
• Analyzes the test results
• Code and model coverage shortfalls analyzed and resolved
• Also prepares the target testing

19 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CTP

• Includes:
– LLR-based tests of the C hand-written code: tested traditionally, with

structural code coverage analysis and resolution
– HLR-based simulation tests, with SCADE LifeCycle QTE tool in order to

verify the SCADE LLR
– SCADE LLR reviews

• Its Objective:
– conformance to the HLR
– HLR coverage
– LLR coverage (for SCADE LLR, LLR coverage is model coverage), in order to

verify the complete coverage of LLRs by the HLR-based test cases

20 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CTP

On Target

21 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CTP

Combined testing on the target platform
• Covers following steps:

– Preparing the coding environment
• Installation of the Source to Object Code Compiler/Linker with a stable version

– Appropriate compiler options are selected (for example, no or little
optimization)

– The same environment is used for C manual code and KCG-generated code in
the project

• Verifying by review and Low Level testing a representative sample of
the KCG generated code
– CVK contains such a representative sample, named “C sample”

• The C sample is tested with full structural code coverage analysis (MC/DC), using
the test suite contained in CVK

– If there is C imported code, integration testing between SCADE Suite-
generated code and imported code is performed

22 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CTP

• Verifying the source to object code traceability
– Guidelines for Approving Source Code to Object Code Traceability, CAST-12

Position Paper December 2002
“If the compiler generates Object Code that is not directly traceable to Source Code
statements, then, additional verification should be performed on the Object Code to
establish the correctness of such generated code sequences.
A compiler-generated array-bound check in the Object Code is an example of Object
Code that is not directly traceable to the Source Code”

• Performing systems requirements-based software and hardware /
software integration tests
– Cover All systems requirements allocated to software are covered by

those tests
– Coverage of the HLR and LLR has to be achieved by the host and target

testing

23 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK IN SCADE SUITE DEVELOPMENT
VERIFICATION

SCADE SUITE DEVELOPMENT FLOW
COMBINED TESTING PROCESS
VERIFICATION USING CVK

24 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Verification using CVK

Compiler verification with CVK completes, for KCG-
generated code only, the verification of

• Object Code, as summarized in DO-178B Table A-6 , “Testing Of Outputs of
Integration Process”, by verifying that the Object Code conforms to the
source code

• Structural coverage, as summarized in DO-178B Table A-7, “Verification Of
Verification Process Results” by verifying that all building blocks of the
generated code have been structurally covered

25 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

What is the content of CVK
test suite ?

How to install CVK ?

26 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK PRODUCT OVERVIEW
CVK PACKAGE CONTENT
CVK INSTALLATION

27 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content

Help directory contains documentation
• The CVK User Manual that provides

– the installation and use instructions
– The customization guidelines

• The CVK Reference Manual that contains
– The Scade samples description
– The test cases description including a specification of the C sample

• The Release Notes and associated documents describing fixed and
remaining issues

28 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content

Bin directory contains
• Utilities to check the CVK installation integrity

CVK directory contains
• The Test DataBase (TDB) in following folders

– CONFIGURATION
– DATA
– RESULTS
– SCRIPTS

29 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• CONFIGURATION folder contains Tcl configuration script files to
customize the CVK environment according to the user environment
– CVK_Environment.tcl: defines the TDB procedures environment

such as paths and compilation options
– CVK_TestCasesList.tcl: test cases list run during one full TDB

execution
– CVK_TestCasesList_real_free.tcl: test cases list run during

one full TDB execution except tests cases that uses real as input, output or
sensor

– CVK_BuildCustom.tcl: customizable procedures that generate the
commands for compiling, linking and running the test programs

– CVK_UnitTest_TestCasesList.tcl: test cases list run for unit
testing

– CVK_UnitTest_TestCasesList_real_free.tcl: test cases run
for unit testing except tests cases that uses real as input, output or sensors

30 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• DATA folder contains
– C sample to verify the C compiler
– Scade samples

• Enables CVK users to (re)generate the C sample with SCADE Suite KCG in their host and cross
platform environment

• Allows comparing the generated code with the expected results provided in the CVK test
suite and verifying SCADE Suite KCG installation

– Test cases exercising the C sample with full MC/DC coverage
– TestCCode folder that contains C source files that are common to all test cases

• cvk_def_<W16|W32|UW32|SP|DP>.h: user macros for integers (WORD16, WORD32,
UNSIGNED WORD32, MAX_INT, SAFE_MAX_INT,…) and floating point numbers
(SIMPLE_PRECISION, DOUBLE_PRECISION, EPSILON, MAX_FLT, SAFE_MAX_FLT,…)
implementation

• cvk_def_common.h: user implementation for bool and char types (kcg_bool and
kcg_char)

• macro_user.h: user macros for initialization/end of test programs
• check.[c|h]: user function to analyze the computed result with regard to the expected

result
• C template files to define user Assume and Guarantee macro functions

31 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• C Sample contains
– All elementary C constructs that may be generated by KCG from a SCADE

Suite model
– Additional combinations of C constructs to check the behavior of the C

compiler on “typical” combinations generated by SCADE Suite KCG
– Complex and deeply nested C code to stress the compiler

• A C sample element is defined by the combination of a SCADE model,
package, root node and a set of KCG code generation options, that
are used to generate this C sample element with KCG

• The test cases list is built with the objective that every element of the C
subset is contained at least once in the generated C sample
– This objective is verified by generated code analysis

32 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• Scade Sample
– composed of three main SCADE Suite models

• CVK_Basic: covers elementary Scade constructs with a low level of complexity

• CVK_Combination: contains “typical” combination of Scade elementary
constructs with a medium level of complexity

• CVK_Limit: contains complex and/or deeply nested expressions, data structures
and calls, that stress the compiler
– Upon request, Esterel Technologies will provide variants of them with different

parameter values

33 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• Test cases contain test vectors that ensure full MC/DC coverage of the C
sample

• contain for numeric operators, both normal-range values, singular
points and min/max values

• Test Harness
– Small main programs
– Each one exercises the code of one test case (generated from one root

node located in a package of a SCADE model with one KCG options set)
– Cyclically

• gets the input vector from memory, defined in <RootNodeName>_io.c
• calls the cyclic function generated by SCADE Suite KCG
• retrieves the output vector and compares it to the expected one,

defined in <RootNodeName>_io.c
– If all output vectors match the expected one, the test harness exits with

return code 97
• This value is chosen because it is very unlikely that a program returns it

accidentally

34 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

Configuration KCG Options Purpose with respect to C Compiler

Standard -O 1 Typical profile for modern compiler, with a good level of traceability and a
reasonable level of complexity

StdWrap -O 1 –wrap_c_obs The same as “Standard” configuration except that arithmetic, relational and logical
operators are wrapped to C protected macro definitions

StdNoBitwise -O 1 –significance_length 127 The same as "Standard" configuration except that no bitwise C operator is used in
generated code

StdSignLength -O 1 –significance_length 127 The same as “Standard” configuration with a value set to 127 for significant
initial characters of SCADE Suite KCG generated identifiers

Optim expall -O 2 High degree of optimization. May generate complex expressions and decrease
traceability. May increase nesting of expressions and control structures in the C code

Global -global_root_context -O 1 Idem “Standard” except the inputs and context of the root node are global variables

Debug -debug –O 0 Decomposed C code and maximum of visibility

DebugMacroOnAssert -debug –O 0 -macro_on_assert The same as "Debug" with use of macro on assertion, macros that shall be defined by
user

O0NoDebug –O 0 Decomposed C code (high number of locals)

O0NoDebugStatic –O 0 -static The same as “O0NoDebug” configuration with the C “static” keyword for each local
variable declaration

Specification regarding the options set (configuration)
• <ConfigurationName> = configuration name
• Following KCG options are common to all configurations and not listed in the table

-user_config cvk_param.h, to take into account CVK parameters set by the user into KCG
generated code

-target C, to generate C code
-target_dir <path>, to take into account CVK parameters set by the user into KCG

generated code

35 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

Data of each test harness are located in:
• DATA/<ModelName>/<PackageName>/<RootNodeName>/<TestCase

Name>/TestHarness
where

<TestCaseName> = test case identification by appending the code
generation configuration name to the root node name:
<TestCaseName> = <RootNodeName>_<ConfigurationName> such as

“Booleans_Standard”

• Example: DATA/CVK_Basic/Logical/Booleans/Booleans_Standard

36 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

Implementation size and precision are defined as follows:
• For integer implementation, there are three configurations covered by test

cases
– Int (W16 = WORD16)
– Long int (W32 = WORD32)
– Unsigned long int (UW32 = UNSIGNEDWORD32)

• For real implementation, there are two configurations covered by test cases
– Float (SP = SIMPLE_PRECISION,)
– Double (DP = DOUBLE_PRECISION)

• kcg_bool, kcg_char, kcg_real and kcg_int default definition (from bool, char,
real and int scade predefined types) are given in file named kcg_types.h via a
“typedef” declaration
– The user could redefine last ones in definition files:
– cvk_def_common.h and cvk_def_<W16|W32|UW32|SP|DP>.h

• Comparison functions used by the test harness to compare actual output
vectors with expected values must be checked with unit tests included in the
CVK package

37 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• RESULTS folder is generated during first CVK execution, contains
– Test reports stored in LogFiles sub-folder and named:

<script name>_<configuration>_<date>_<time>.txt

where
<script name>: name of Tcl script used (without prefix CVK_)
<configuration>: configuration name passed as argument
<date> ::= M-DD-YY (D: day, M: month in letters, Y: Year)
<time> ::= HH-MM-SS (hours, minutes, seconds)

– Build.log and Run.log stored in current_<configuration> sub-folder,
containing the test harness build and execution traces

<configuration> is either
SP_W16|SP_W32|SP_UW32|DP_W16|DP_W32|DP_UW32 depending on

what is defined in CONFIGURATION/CVK_Environment.tcl by the user
– Data generated for each test case named <TestCaseName> are stored in

Current/<TestCaseName> sub-folder
Example: Current/ArithmeticInt_Standard

38 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• SCRIPTS folder contains Tcl scripts files that run automated CVK test
procedures as follows:
– Installation verification Tcl script files:

• CVK_Check.tcl to verify the CVK installation integrity (not KCG one)
• CVK_KCG_Verification.tcl to check that code generated by SCADE Suite KCG in the

user environment from the Scade sample is the same as the reference C sample delivered
with CVK

– Common Tcl script files:
• CVK_Tools.tcl, Tcl CVK library, implements several utility Tcl procedures
• CVK_Init.tcl called by all other Tcl scripts in order to initialize their launch:

– Load CVK_Tools.tcl
– Check the command line
– Set the following CVK environment variables:

• SCADE KCG installation path (defined in
CONFIGURATION/CVK_Environment.tcl)

• KCG settings
• CVK version
• CVK banner
• result file name (default one is CVKResult_${date}.txt)

39 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

– Metrics Tcl script file:
• kcgmetrics2.tcl, Tcl CVK library, to compute the two following metrics:

– Number of characters in a logical source line and
– Number of nesting levels for #included files.

• To execute it, run the following command in the output directory of KCG:
tclsh kcgmetrics2.tcl -scade <SCADE_installation> [-I <include_dir>] [-h]

Where:
– <SCADE_installation> refers to the SCADE installation directory
– [-I <include_dir>] parameter is optional and allows specifying additional include directories
– [-h] parameter is optional and displays help message

• Building test harness Tcl script files:
– CVK_ExecutableGeneration.tcl to generate test programs (test harness)

• Load CVK_Init.tcl when the test cases list is empty
• Load CVK_BuildCustom.tcl (from CONFIGURATION folder)
• Run CVK_ScriptFilesGeneration.tcl to generate

– <nodename>_build.* file (.bat for Windows) in charge of the test harness
compiling/linking

– <nodename>_run.* (.bat for Windows) in charge of running the test harness

• Run CVK_ExecutableBuild.tcl to execute the <nodename>_build.* file

40 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: TDB

• Executing test harness Tcl script files:
– CVK_ExecutableRun.tcl to run the test harness previously

generated by the CVK_ExecutableGeneration.tcl script
• Load CVK_Init.tcl when the test cases list is empty

• Building and executing test harness Tcl script files:
– CVK_ExecutableGenRun.tcl to build and run the test harnesses

• Execute CVK_ExecutableGeneration.tcl
• Execute CVK_ExecutableRun.tcl

41 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK PRODUCT OVERVIEW
CVK PACKAGE CONTENT
CVK INSTALLATION

42 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Installation

Prerequisites:
• SCADE Suite KCG is already installed
• Need a Tcl distribution version 8.4 or later (CVK automated test procedures

are made of Tcl scripts)
– Get tcl from http://www.tcl.tk/software/, free of charge

Or reference the path of tcl binaries from SCADE Suite installation in
the PATH environment variable: <SCADE_DIR>\contrib\tcl\bin

Install it on a root path as “C:\CVK64”
• This avoids problems because of the Windows path length limitation when

executing F_127_StdSignLength test case

43 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Installation

Host Platform:
• Select for the user a platform with the following criteria:

– SCRIPTS/CVK_KCG_Verification.tcl must be executed in the
platform where KCG is run in production, listed in KCG Tool
Accomplishment Summary document (TAS, in the certification Kit)

– For other CVK scripts execution, it must be the cross compilation platform
which is used in production

– Update if any in CONFIGURATION/CVK_BuildCustom.tcl
• compiler / linker tool names
• object files target directory
• object files extension
• compiler / linker options

44 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Installation

Target Platform:
• Platform on which the real application is embedded
• CVK must be adapted to the user cross platform and target:

– Cross compiler/linker
– Operating system
– Hardware

45 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Installation

Check the installation integrity
• Use “CVK\SCRIPTS\CVK_Check.tcl”

– Verifies that the CVK files are present and unchanged with respect to the
reference product

– Based on verification of checksums of each file, except documentation
files

– Verifies CVK, not SCADE Suite KCG product installation
• Execute on a batch window in the SCRIPTS folder:

tclsh CVK_Check.tcl

• This verification is passed if the following message is displayed
Success: 0 different signature(s) over 2288 analyzed file(s)

Tip: By convention “tclsh” means the name of the user tcl shell.
So, if the tcl shell name is not “tclsh”, replace “tclsh” by the correct one such
as “tclsh84”

46 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

46

Exercise 1

The aim of this exercise is
• To run CVK on a host platform to verify the CVK flow

⁻ Step 1: check the CVK installation integrity
⁻ Step 2: update CVK user environment variables to the host platform
⁻ Step 3: update compiler / linker settings to the host platform
⁻ Step 4: verify the CVK and KCG installation data
⁻ Step 5: verify CVK comparison functions
⁻ Step 6: - build and run test harnesses on host

- check the passed status of the test cases execution

47 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

47

Exercise 1

Step 1: check the installation integrity
• Launch a Dos batch window
• Update PATH environment variable according to:
⁻ SCADE installation bin directory path (that contains KCG 6.4)
⁻ Tcl installation bin directory path
Path =

<SCADE_DIR>\bin;<SCADE_DIR>\contrib\tcl\bin;%path%

• Run the integrity check

48 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Installation

Update CVK user environment variables
• Edit the “CVK\CONFIGURATION\CVK_Environment.tcl” file

– Set the scadeKCGPath variable to the KCG installation folder path
Example:
set scadeKCGPath {C:\Program Files\Esterel Technologies\KCG6.4}

– Set the following variables to expected values:
• realImplementation variable with SP or DP (SIMPLE or DOUBLE

PRECISION)
• intImplementation variable with W16, W32 or UW32 (WORD16,

WORD32 or UNSIGNEDWORD32)
Example:
set intImplementation {W16}

set realImplementation {SP}

49 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Installation

Check the CVK and KCG installation data
• Use “CVK\SCRIPTS\CVK_KCG_Verification.tcl”

– Verifies that code generated by KCG in the user environment from the
SCADE sample is the same as the reference C sample delivered with CVK

– The verification is applied either to:
• All CVK test cases (default)
• The list of test cases given in the command line if there are

• Execute on a batch window in the SCRIPTS folder:
tclsh CVK_KCG_Verification.tcl

– The following message is displayed
"Tests Results are stored in <pathname_of_the_results_file>"

– The status is “OK” for all test cases in this results log file (RESULTS folder)

50 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

50

Exercise 1

Step 2: update CVK user environment variables to the host platform
• Edit ..\CONFIGURATION\CVK_Environment.tcl
• Update following variables:

⁻ scadeKCGPath to the user local KCG 6.4 installation path
⁻ realImplementation to SIMPLE_PRECISION (SP)
⁻ intImplementation to WORD16 (W16)

set scadeKCGPath {<SCADE_DIR>}

set realImplementation {SP}

set intImplementation {W16}

51 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

51

Exercise 1

Step 3: update compiler/linker settings to the host platform
• Edit ..\CONFIGURATION\CVK_BuildCustom.tcl
• Update GenBuild procedure as follows:

Compiler name
puts $batFileRef "@set vCompiler=gcc.exe"

Linker name
puts $batFileRef "@set vLinker=gcc.exe"

Object files directory
puts $batFileRef "@set vObjDir=win32"

Object files extension
puts $batFileRef "@set vObjExt=.obj"

Compiler options
puts $batFileRef "@set vCFlags=-O2 -pedantic"

Linker options
puts $batFileRef "@set vLDFlags=-o \"${rootNodeName}${vExeExt}\"“

52 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

52

Exercise 1

• Update GenRun procedure as follows:
⁻ puts $batFileRef "\"${exePath}\""

• Update PATH environment variable according to GNU gcc binaries
installation directory

53 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

53

Exercise 1

Step 4: verify the CVK and KCG installation data
• Run CVK_KCG_Verification.tcl
• Check that no error message is raised
• Tests Results are stored in

<CVK_DIR>\CVK\RESULTS\LogFiles\KCG_Verification_<date>-<time>.txt
• When “_CVK_KCG_Verification end” is displayed, check in the results log

file that the status is “OK” for all test cases

54 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

54

SOLUTION

55 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

55

Solution: Step 4

In the result log file:

###
#######################

>> CVK Test Case KCG verification summary <<

=====================================

* Total number : 117

* Successful KCG verification : 117

* Failed KCG verification : 0

=====================================

56 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

How to run CVK tests suite on a target ?

57 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

USING CVK
PREREQUISITES BEFORE USING CVK
ADAPTING CVK TO CROSS PLATFORM AND TARGET
GENERATE AND RUN EXECUTABLE TEST CASES

58 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK

Verify CVK comparison functions to ensure that the user
cross-compiler compiles correctly these functions:

• Use CVK test suite that contains, with <type>= {bool, int, float}:
– Nominal unit tests:

• compare_<type>_nominal tests that check that reference and expected
outputs are the same ones

• For floating number tests comparison, three cases are covered:
– The reference output values are exactly the same as expected
– The reference output values are greater than expected ones but the difference

between reference and expected outputs is below the tolerance threshold
– The reference output values are lower than expected but the difference

between reference and expected outputs is below the tolerance threshold

59 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK

– Robustness unit tests
• compare_<type>_incorrect tests that check that reference and

expected outputs are not the same ones
• For floating number tests comparison, two cases are covered:

– The reference output values are greater than expected ones and the
difference between reference and expected outputs exceeds the tolerance
threshold

– The reference output values are lower than expected and the difference
between reference outputs and expected outputs exceeds the tolerance
threshold

60 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK

• Test procedures to run previous unit tests are the same ones as for
the other CVK tests
– Execute on a batch window in the SCRIPTS folder:

• tclsh CVK_ExecutableGeneration.tcl -f

../CONFIGURATION/CVK_UnitTest_TestCasesList.tcl
This execution is passed if:

– The following message is displayed
"Tests Results are stored in <pathname_of_the_results_file>"

– The status is “OK” for all test cases in this results log file

• tclsh CVK_ExecutableRun.tcl –f

../CONFIGURATION/CVK_UnitTest_TestCasesList.tcl
This execution is passed if:

– The following message is displayed
"Tests Results are stored in <pathname_of_the_results_file>"

– The status is “OK” for all nominal test cases and “NOK” for all robustness ones

61 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK

Verify that the complexity of code generated by KCG from
its SCADE application is in the limits scope covered by
CVK

• Check metrics values as defined in ANSI-ISO/C after code generation
by analyzing the generated C source code

• Check that each maximum value associated to a metric is less than or
equal to the limit value tested in CVK
– Metrics are split in several categories:

• Data Structures
• Control Structures
• Program Size

62 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK

– KCG provides most values for these metrics in a file named
kcg_metrics.txt

• This file is systematically generated when KCG is launched
• Each value corresponds to the maximum value computed on the

generated C code
– Some others metrics must be computed by scripts (kcgmetrics2.tcl and

user ones) or manually

Note: kcg_metrics.txt is available for the CVK_Limit model

63 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK

The SCADE LifeCycle Dashboard
• A mean to allow Safety and Quality Managers to check that the code

generated by KCG meets the safe usage domain of cross compiler
• Merges metrics generated by KCG on your application and data coming

from CVK

64 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

USING CVK
PREREQUISITES BEFORE USING CVK
ADAPTING CVK TO CROSS PLATFORM AND TARGET
GENERATE AND RUN EXECUTABLE TEST CASES

65 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Adapting CVK to Cross and Target
Platform

CVK Flow Overview

• Once all tests have been passed successfully on host platform, these tests
can be adapted and run on cross and target environments

66 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Adapting CVK to Cross and Target
Platform

Adapting Test Harness To The cross Compiler And Target
• Update if need be, PREAMBLE and POSTAMBLE, user macros

defined in TestCode/macro_user.h file
– These macros are called in CVK_MAIN function of <RootNodeName>_test.c

• Redefine PREAMBLE to perform target-specific initialization functions
• Redefine POSTAMBLE to perform target-specific termination functions such as

communicate the pass/fail status in another way than with the return code

67 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
am

pl
e

67

Adapting CVK to Cross and Target Platform
CVK_Basic\Logical\Booleans\Booleans_Standard

Default declarations:
#define PREAMBLE()
#define POSTAMBLE(nCR) exit(nCR)

int CVK_MAIN(void)
{
int result = 0;
int nCR = 1;
int nNbCycl;
PREAMBLE();
INIT_Booleans();
/* Main loop */
for (nNbCycl=0; nNbCycl<NB_CYCL; nNbCycl++) {
VAR_Booleans_BoolInput1 = Inputs[nNbCycl].BoolInput1;
VAR_Booleans_BoolInput2 = Inputs[nNbCycl].BoolInput2;
VAR_Booleans_BoolInput3 = Inputs[nNbCycl].BoolInput3;
PERFORM_Booleans();
if (CheckResults(nNbCycl)) {

result = result + 1;
}

} /* end Main loop */

if (result == NB_CYCL) {
nCR = 97;

}
POSTAMBLE(nCR);
}

)

68 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Adapting CVK to Cross and Target
Platform

Adapting Types Implementation
• Redefine if need be, type definitions for

– Boolean and character in macros located in
TestCode/cvk_def_common.h

Default declarations:
#define kcg_bool kcg_bool
typedef long kcg_bool;

• integer and float defined in macros located in
TestCode/cvk_def_<|W16|W32|UW32|SP|DP>.h

Default declarations:

#define DOUBLE_PRECISION
#define kcg_real kcg_real
typedef double kcg_real

#define SIMPLE_PRECISION
#define kcg_real kcg_real
typedef float kcg_real;

#define kcg_char kcg_char
typedef char kcg_char;

#define WORD16
#define kcg_int kcg_int
typedef short int kcg_int;

#define WORD32
#define kcg_int kcg_int
typedef int kcg_int;

#define UWORD32
#define kcg_int kcg_int
typedef unsigned long kcg_int;

69 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Adapting CVK to Cross and Target
Platform

Adapting Compiling and Linking Procedure
• Update if need be, CONFIGURATION/CVK_BuildCustom.tcl

– GenBuild procedure to create
• in one way a batch file (such as .bat or .sh file) to execute compilation routines
• or another way a Makefile and a batch file that execute make command
• In the PARAMETERS section, update compiler / linker tool names, object files target

directory, object files extension and compiler / linker options
Compiler name

puts $batFileRef "@set vCompiler=gcc.exe"

Linker name

puts $batFileRef "@set vLinker=gcc.exe"

Object files directory

puts $batFileRef "@set vObjDir=win32"

Object files extension

puts $batFileRef "@set vObjExt=.obj"

Compiler options

puts $batFileRef "@set vCFlags=-O2 -pedantic"

Linker options

puts $batFileRef "@set vLDFlags=-o \"${rootNodeName}${vExeExt}\"“

– GenRun procedure, to generate the executable run as a batch file:
puts $batFileRef "\"${exePath}\""

Default values are set for gcc tool
and Windows OS to produce a .bat
file

70 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Adapting CVK to Cross and Target
Platform

• Find in the CONFIGURATION folder several customizations of
CVK_BuildCustom.tcl named CVK_BuildCustom_<type>.tcl where
– <type> = gcc / gcc_unix / VC6 / VC2012, respectively for the use of

Windows gcc , Unix gcc, Visual C++ 6.0 (VC) and VC 2012.

Downloading and Running Test Harnesses
• Specific to the target environment (user customization)
• Two cases:

– The execution environment does not support automation
• Must download and run manually each test program
• Collect manually the status (for instance with a debugger)

– The execution environment supports automation
• Insert directives in CONFIGURATION/CVK_BuildCustom.tcl that control

downloading the program and retrieve results according to the current target
platform

71 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

USING CVK
PREREQUISITES BEFORE USING CVK
ADAPTING CVK TO CROSS PLATFORM AND TARGET
GENERATE AND RUN EXECUTABLE TEST CASES

72 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Generate and Run Executable Test Cases

Execute on a batch window in the SCRIPTS folder:
• For generation of all executable test cases on the cross environment:
tclsh CVK_ExecutableGeneration.tcl

• For running all executable test cases on the target platform:
tclsh CVK_ExecutableRun.tcl

• For generation and running all executable test cases:
tclsh CVK_ExecutableGenRun.tcl

• Each previous execution is passed if:
– The following message is displayed

"Tests Results are stored in <pathname_of_the_results_file>“
– The status is “OK” for all test cases in this results log file (located in
RESULTS folder)

• Test Results
– Passed/failed results are summarized in the RESULTS/LogFiles folder
– Details of build/run can be found in the *.log files of

CURRENT/<TestCaseName> folder
• If a test is failed then users must verify the settings of the compiler that must

be C standards (ANSI, ISO) compliant

73 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Generate and Run Executable Test Cases

Optional arguments:
• Use “-v”, to trace details to the output batch window (verbose mode)
• Use <TestCasesList>, to specify that the procedure has to be applied only to a

list of test cases (white separated test case names)
– Example: to generate ArithmeticInt_Global and ArithmeticInt_Standard

test harnesses
tclsh CVK_ExecutableGeneration.tcl

ArithmeticInt_Global ArithmeticInt_Standard

• Use «-f <FileName>.tcl», to run the procedure on a test cases subset
that are specified in the <FileName> Tcl file
– Example: to generate the test harness for the arithmetic test cases only

tclsh CVK_ExecutableGeneration.tcl –f
../CONFIGURATION/CVK_ArithmeticTestCasesList.tcl

Where the content of CVK_ArithmeticTestCasesList.tcl is created as
follows in the CONFIGURATION folder:
CVK_Basic Arithmetic ArithmeticInt Standard {}
CVK_Basic Arithmetic ArithmeticInt Debug {}
CVK_Basic Arithmetic ArithmeticInt Global {}
CVK_Basic Arithmetic ArithmeticReal Standard {}

74 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

74

Exercise 1

Step 5: verify CVK comparison functions
• Run executable generation for unit test cases
⁻ Check that the following message is displayed

Tests Results are stored in
<CVK_DIR>\CVK\RESULTS\LogFiles\ExecutableGeneration_<date>_<time>.txt

⁻ Check in this results log file that the status is “OK” for all test cases

• Launch executable run for unit test cases
⁻ Check that the following message is displayed
Tests Results are stored in

<CVK_DIR>\CVK\RESULTS\LogFiles\ExecutableRun_SP_W16_<date>_<time>.txt
⁻ Check in this results log file that the status is “OK” for all test cases

75 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

75

Exercise 1

Step 6: build and run test cases on host
• Run executable generation for test cases
⁻ Check that the following message is displayed:

Tests Results are stored in
<CVK_DIR>\CVK\RESULTS\LogFiles\ExecutableGeneration_<date>_<time>.txt

⁻ Check in this results log file that the status is “OK” for all test cases

• Launch executable run for test cases
⁻ Check that the following message is displayed :
Tests Results are stored in

<CVK_DIR>\CVK\RESULTS\LogFiles\ExecutableRun_SP_W16_<date>_<time>.txt
⁻ Check in this results log file that the status is “OK” for all test cases

76 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

76

SOLUTION

77 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

77

Solution: Step 5

Executable generation, in the result log file:
###
#
>> CVK Test Case generation summary <<
=====================================
* Total number : 6

* Successful generation : 6
* Failed generation : 0

=====================================

Executable run, in the result log file:
###
#
>> CVK Test Case execution summary <<
=====================================
* Total number : 6

* Successful execution : 3
* Failed execution : 3

=====================================
###
#

78 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Ex
er

ci
se

78

Solution: Step 6

Executable generation, in the result log file:
###
#
>> CVK Test Case generation summary <<
=====================================
* Total number : 117

* Successful generation : 117
* Failed generation : 0

=====================================

Executable run, in the result log file:
###
#
>> CVK Test Case execution summary <<
=====================================
* Total number : 117

* Successful execution : 117
* Failed execution : 0

=====================================
###
#

79 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

ANNEX

80 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Verification using CVK

DO-178B Table A-6, “Testing Of Outputs of Integration Process”

Objective Verification Method Applicability
by SW Level

1 Executable Object Code complies
with high level requirements

Test cases covering normal HLR conditions both on
host and target (SCADE LifeCycle TE)

A, B, C, D

2 Executable Object Code is robust
with high level requirements

Test cases covering abnormal HLR conditions
(robustness cases) both on host and target (TE)

A, B, C, D

3 Executable Object Code complies
with low level requirements

SCADE Suite KCG Qualification
CVK sample testing on the target

A*, B*, C

4 Executable Object Code is robust
with low level requirements

Test arithmetic exception handler and/or usage of
robust arithmetic blocks (robustness analysis and
testing): not part of CVK

A*, B, C

5 Executable Object Code is
compatible with target computer

HW / SW integration testing:
Qualitative compatibility is ensured by nature of
generated code (portable code)
Quantitative compatibility is evaluated by resource

A, B, C, D

* The objective should be satisfied with independence

81 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Verification using CVK

DO-178B Table A-7, “Verification Of Verification Process Results”

* The objective should be satisfied with independence

Objective Verification Method Applicability
by SW Level

1 Test procedures are correct Test procedure review, concerns both host and
target

A*, B, C

2 Test results are correct and
discrepancies explained

Test results review, concerns both host and target A*, B, C

3 Test coverage of high-level
requirements is achieved

Coverage of HLR by test cases A*, B, C, D

4 Test coverage of low-level
requirements is achieved

Model Test Coverage (TE-MTC, QMTC) A*, B, C

5 Test coverage of software structure
(modified condition/decision) is
achieved

KCG qualification
MC/DC on CVK “C sample”
MC/DC coverage on SCADE model

A*

6 Test coverage of software structure
(decision coverage) is achieved

DC on CVK “C sample” A*, B*

7 Test coverage of software structure
(statement coverage) is achieved

Statement coverage on CVK “C sample” A*, B*, C

82 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Verification using CVK

DO-178C:
• Objective MB.A-4.3: Low level requirements are compatible with target

computer
• CVK allows analysis of compatibility of the cross compiler and target with

respect to:
– Complexity of expressions
– Complexity of control structures
– Rounding to zero

• Objective MB.A-4.10: Architecture is compatible with target computer
• CVK allows analysis of compatibility of the cross compiler and target with

respect to:
– Complexity of data structures nesting
– Number of arguments in a function call

83 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: CVK_Basic
SCADE Package Name Test Cases Objective Implementation

Arithmetic ArithmeticInt Cover basic integer operators (+, -, *, div, mod, unary minus).
Also Cover use of public and private operators

W16 / W32 / UW32

Arithmetic ArithmeticReal Cover basic real operators (+, -, *, /, unary minus) and real to int
conversion

SP / DP

Arithmetic ArithmeticIntCast Conversion from int to real W16 / W32 / UW32;
SP / DP

Arrays ArrayAccess Static and dynamic array projection W16 / W32 / UW32

Arrays ArrayAccessWithSize Array access with size parameter W16 / W32 / UW32

Arrays ArrayConstructors Array constructor operators W16 / W32 / UW32

Arrays Concatenation Array concatenation W16 / W32 / UW32
Arrays Iterators Cover iterators operators (fold|map ,fold|map<i,w,wi>, mapfold) W16 / W32 / UW32

Arrays Reverse Array reverse operator W16 / W32 / UW32
Arrays Slice Cover array slice operator W16 / W32 / UW32
Arrays SumIntWithSizes Use function with two size parameters W16 / W32 / UW32
Arrays Transpose Cover array transpose operator W16 / W32 / UW32

ClockedBlocks Booleans If block construct W16 / W32 / UW32

ClockedBlocks Enumerates When block construct N/A
Comparison ComparisonChar Cover comparison operator on char type (<>, =) N/A

Comparison ComparisonEnum Cover comparison operator on enum type (<>, =) N/A

Comparison ComparisonInt Cover comparison operator on int type (<, <=, >, >=, <>, =) W16 / W32 / UW32

Comparison ComparisonReal Cover comparison operator on real type (<, <=, >, >=,<>, =) SP / DP

ConditionalRestart Activate Conditional node activation (with default value, with initial default value,
on clock, on not clock, on match value clock)

W16 / W32 / UW32

ConditionalRestart Restart Conditional node restart construct W16 / W32 / UW32

Contract Assume Assume contract W16 / W32 / UW32
Contract AssumeGuarantee Both assume and guarantee contract W16 / W32 / UW32
Contract Guarantee Guarantee contract W16 / W32 / UW32

84 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: CVK_Basic
SCADE Package

Name
Test Cases Objective Implementation

GroupType ConditionalSumProdInt Cover group type W16 / W32 / UW32

ImportExport InstanceImportedOperator Imported node and function W16 / W32 / UW32

ImportExport ComparisonImportedType Imported type W16 / W32 / UW32

Logical Booleans Cover boolean operators (and, or, xor, not, =, <>, #) N/A
Polymorphism NumPolymorphismInstInt Use polymorphic numeric operator with int type W16 / W32 / UW32

Polymorphism NumPolymorphismInstIntReal Use function with two parametric types W16 / W32 / UW32;
SP / DP

Polymorphism NumPolymorphismInstReal Use polymorphic numeric operator with real type SP / DP
Polymorphism PolymorphismInstance Use polymorphic operator with bool type N/A
Selection CaseOf Case…of operator when condition is int input, or bool input, or enum

input or char input
W16 / W32 / UW32

Selection IfThenElse If…then…else operator with flows of bool, char and int values W16 / W32 / UW32
Selection IfThenElseReal If…then…else operator with flows of real and int values W16 / W32 / UW32;

SP / DP
StateMachine Automaton Automaton with normal, fork, history, strong and weak transitions N/A
StateMachine Parallelism Parallel composition of state machine N/A
StateMachine Synchro Automaton with synchronization transition N/A

Structures Projection Use of structure projection W16 / W32 / UW32
Structures StructConstructor Use structure constructor W16 / W32 / UW32

TextualOperators InstanceFunction Textual operator W16 / W32 / UW32

TextualOperators SpecializeSumInt Specialize imported polymorphic function with int type W16 / W32 / UW32

TextualOperators SpecializeSumReal Specialize imported polymorphic function with real type SP / DP

TextualStateMachine EvenTimes Textual State Machine W16 / W32 / UW32

TextualStateMachine EvenTimesNotify Variant of Textual State Machine W16 / W32 / UW32

85 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: CVK_Basic
SCADE Package

Name
Test Cases Objective Implementation

Time Fby Fby operator for single flow, implicit group flows and array W16 / W32 / UW32

Time Init Init operator for single flow, implicit group flows and structure W16 / W32 / UW32

Time Merge Merge with boolean condition and enumerate condition W16 / W32 / UW32

Time Pre Pre operator for single flow, implicit group flows and structure W16 / W32 / UW32

Time Times Times operator W16 / W32 / UW32

86 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content:
CVK_Combination

SCADE Package
Name

Test Cases Objective Implementation

Arithmetic ArithmeticAdvanced Combine real and integer I/O with integer and real operators W16 / W32 / UW32;
SP / DP

Arithmetic ArithmeticIntAdvanced Combine integer operators (+, -, *, div, mod, unary minus) W16 / W32 / UW32

Arithmetic ArithmeticRealAdvanced Combine real operators (+,-, *, /, unary minus) W16 / W32 / UW32
SP / DP

Arithmetic RobustIntDiv Implementation of robust div where result is numerator if divide by zero W16 / W32 / UW32

Arithmetic RobustIntProd Implementation of robust product so result is in bound W16 / W32 / UW32

Logical MediumBooleans Combine boolean operators (and, or, xor, not, #) N/A

StateMachine ABC ABC automaton implementation N/A
StateMachine ABRO ABRO automaton implementation N/A

87 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: CVK_Limit
SCADE Package

Name
Test Cases Objective Implementation

Arithmetic combine_int_A_10 Combine int operators with level of parenthesizes below 10 W16 / W32 / UW32
Arithmetic combine_int_N_10 Combine int operators with level of parenthesizes above 10 W16 / W32 / UW32
Arithmetic combine_float_A_10 Combine float operators with level of parenthesizes below 10 SP / DP
Arithmetic combine_float_N_10 Combine float operators with level of parenthesizes above 10 SP / DP

Arithmetic sum_int Test 63 as limit number of nesting levels of parenthesized expressions within a
full expression of int number

W16 / W32 / UW32

Arithmetic sum_float Test 63 as limit number of nesting levels of parenthesized expressions
within a full expression of float number

SP / DP

Control large_match_block_255 Test 255 as limit of number of case labels for a switch statement W16 / W32 / UW32
Control nested_if_block_31 Test 31 as limit of number of nesting levels of compound statements (blocks),

iteration control structures and selection control structures
W16 / W32 / UW32

Data array_depth10 Test number of dimensions for an array W16 / W32 / UW32
Data array_width4095 Test 4095 as limit of maximum size for a dimension W16 / W32 / UW32
Data cte_ext_adder_4095 Test 4095 as limit of number of external identifiers in one translation unit W16 / W32 / UW32
Data enum_255 Test 255 as limit of number of enumeration constants in a single enumeration N/A
Data c_macro_adder_4095 Test 4095 as limit of number of macro identifiers simultaneously defined in

one preprocessing translation unit
W16 / W32 / UW32

Data f_io_63_root Test 63 as limit of number of parameters in one function definition and
number of arguments in one function call

W16 / W32 / UW32

Data f_io_255_root Test 255 as limit of number of parameters in one function definition and
number of arguments in one function call

W16 / W32 / UW32

Data F127 Test 127 as number of significant initial characters in an internal identifier or a
macro name and number of significant initial characters in an external identifier

W16 / W32 / UW32

Data locals_511 Test 511 as limit of number of identifiers with block scope declared in one block W16 / W32 / UW32
Data locals_2047 Test 2047 as limit of number of identifiers with block scope declared in one block W16 / W32 / UW32
Data nf_leaf_62 Test structure or union with 62 levels of definitions in a single struct-declaration-

list
W16 / W32 / UW32

88 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

CVK Package Content: CVK_Limit
SCADE Package

Name
Test Cases Objective Implementation

Data nf_leaf_45 Test structure or union with 45 levels of definitions in a single struct-
declaration-list

W16 / W32 / UW32

Data nf_leaf_30 Test structure or union with 30 levels of definitions in a single struct-
declaration-list

W16 / W32 / UW32

Data nf_leaf_25 Test structure or union with 25 levels of definitions in a single struct-
declaration-list

W16 / W32 / UW32

Data nf_leaf_14 Test structure or union with 14 levels of definitions in a single struct
declaration-list

W16 / W32 / UW32

Data nf_width Test 1025 as limit of number of members in a single structure or union W16 / W32 / UW32
Data nf_width_255 Test 256 as limit of number of members in a single structure or union W16 / W32 / UW32
Logical deep_atoms Test deeply combination of boolean operators N/A
Data2 c_macro_adder_2000 Test 2000 as limit of number of macro identifiers simultaneously defined in

one preprocessing translation unit
W16 / W32 / UW32

Data3 cte_ext_adder_512 Test 512 as limit of number of external identifiers in one translation unit W16 / W32 / UW32
Data3 array_combine_3_5 Test number of dimensions for an array W16 / W32 / UW32
Data3 locals_4800 Test 4800 as limit of number of identifiers with block scope declared in one

block
W16 / W32 / UW32

Data3 nf_width_1600 Test 1602 as limit of number of members in a single structure or union W16 / W32 / UW32

89 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK
Metric name To be

verified
Generated

by KCG
Reference in KCG metrics

Numbers of levels of nested structure or union definitions in a single structure-
declaration-list

Yes No

Number of members in a single structure or union Yes Yes Max members in a single structure

Number of dimensions for an array Yes Yes Max number of dimensions

Maximum size for a dimension Yes Yes Max size for a dimension

Constants in a single enumeration Yes Yes Max of enum constants

Number of Case labels for a switch statement Yes Yes Max number of case labels in a switch

Number of nesting levels of compound statements (blocks), iteration control
structures and selection control structures

Yes Yes Max number of nesting levels in
compound statement

Number of nesting levels of parenthesized declarators within a full declarator No No

Number of pointer, array, and function declarators (in any combinations)
modifying an arithmetic, structure, union, or incomplete type in a declaration

Yes Yes Max number between 1 and Max

Number of dimensions Number of nesting levels of parenthesized expressions
within a full expression

Yes Yes Max level of nested parenthesis

Number of significant initial characters in an internal identifier or a macro
name

Yes No

Number of significant initial characters in an external identifier Yes No

Number of external identifiers in one translation unit Yes Yes Max number of external identifiers
Number of identifiers with block scope declared in one block Yes Yes Max number of identifiers declared in

a block
Number of macro identifiers simultaneously defined in one preprocessing
translation unit

Yes Yes Max number of macro identifiers

Number of parameters in one function definition Yes Yes Max number of function parameters
in definition

Number of arguments in one function call Yes Yes Max number of function arguments in
a call

90 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK
Metric name To be

verified
Generated

by KCG
Reference in KCG metrics

Number of parameters in one macro definition No No

Number of arguments in one macro call No No

Others Number of nesting levels of conditional inclusion No No

Number of nesting levels for #included files Yes No

Number of characters in a logical source line No No From [KCG-TOR], requirement KCG-
273, "A line in the generated code
shall not exceed 2048 characters,
unless composed of a single identifier
longer than 2048 characters".
This metric depends of "Number of
significant initial characters in an
internal or external identifier or a
macro name".

Number of characters in a string literal No No
Number of bytes in an object (in a host environment only) Yes No

91 © 2015 ANSYS, Inc. April 1, 2015 © Esterel Technologies - An ISO 9001:2008 Certified Company

Prerequisites Before Using CVK
Criteria Maximum

values
(CVK)

Intermediate
levels
(CVK)

Number of levels of nested structure or union definitions in a single structure declaration-list 63 15, 26, 31, 46
Number of members in a single structure or union 1602 256, 1025
Number of dimensions for an array 10 3
Maximum size for a dimension 4095 5
Number of enumeration constants in a single enumeration 255
Numbers of case labels in a switch 255
Numbers of nesting levels in compound statement(blocks), iteration control structures and
selection control structures

31

Number of nesting levels of parenthesized declarators within a full declarator 1
Number of pointer, array, and function declarators (in any combination) modifying an arithmetic,
structure, union, or incomplete type in a declaration

10 3

Number of nesting levels of parenthesized expressions in a full expression 63
Number of significant initial characters in an internal identifier or a macro name 127
Number of significant initial characters in an external identifier 127
Number of external identifiers in one translation unit 4281 512, 4095
Number of identifiers with block scope declared in one block 4800 511, 2047

Number of macro identifiers simultaneously defined in one preprocessing translation unit 4157 2013, 4095
Number of parameters in one function definition 255 63
Number of arguments in one function call 255 63
Number of parameters in one macro definition 2
Number of arguments in one macro call 3
Number of nesting levels of conditional inclusion 2
Number of nesting levels for #included files 63 15, 26, 31, 46
Number of characters in a logical source line 831
Number of characters in a string literal N/R
Number of bytes in an object (in a hosted environment only) N/R

	SCADE TRAINING� �
	Agenda
	Diapositive numéro 3
	Strategy for Developing CVK
	Strategy for Developing CVK
	Strategy for Developing CVK
	Diapositive numéro 7
	CVK Definition
	KCG and CVK Role
	KCG and CVK Role
	Diapositive numéro 11
	��
	SCADE Suite Development Flow
	��
	Combined Testing Process (CTP)
	Combined Testing Process (CTP)
	CTP
	CTP
	CTP
	CTP
	CTP
	CTP
	��
	Verification using CVK
	Diapositive numéro 25
	��
	CVK Package Content
	CVK Package Content
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	CVK Package Content: TDB
	��
	CVK Installation
	CVK Installation
	CVK Installation
	CVK Installation
	Exercise 1
	Exercise 1
	CVK Installation
	CVK Installation
	Exercise 1
	Exercise 1
	Exercise 1
	Exercise 1
	��
	Solution: Step 4
	Diapositive numéro 56
	��
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK
	��
	Adapting CVK to Cross and Target Platform
	Adapting CVK to Cross and Target Platform
	Adapting CVK to Cross and Target Platform
	Adapting CVK to Cross and Target Platform
	Adapting CVK to Cross and Target Platform
	Adapting CVK to Cross and Target Platform
	��
	Generate and Run Executable Test Cases
	Generate and Run Executable Test Cases
	Exercise 1
	Exercise 1
	��
	Solution: Step 5
	Solution: Step 6
	��
	Verification using CVK
	Verification using CVK
	Verification using CVK
	CVK Package Content: CVK_Basic
	CVK Package Content: CVK_Basic
	CVK Package Content: CVK_Basic
	CVK Package Content: CVK_Combination
	CVK Package Content: CVK_Limit
	CVK Package Content: CVK_Limit
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK
	Prerequisites Before Using CVK

