
Realize Your Product Promise®

Training
Resources

Model-Based Design

with

SCADE Suite®

Day 3

2 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

2

Brainstorming on Scade

Objective:
Come back to the main principles of Scade

Requirements:
On a piece of paper, note down the main principles of Scade that you
have studied during the training

Preparation Time: 8 min

3 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

AGENDA

Arrays

Iterators

Code Generation

Imported Code

4 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

ARRAYS

Sequence of values sharing the same type

5 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Don’tDo

Array Type

int16^12

bool^4

char^M

float32^6^6

uint8^2^(N+M)

{en:bool,val:char^3}^N

int16^0

5^true

bool^x

(x is not a constant)

(N and M are defined as constant)

<type>^<size>
Any Scade type Integer constant expression > 0

6 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Constructors

’T × ’T × … × ’T → ’T^N

[a,b,c]

’T × ’int → ’T^N

a^5

Data Array

a

b

c

1
'T

'T

'T

o
'T 3̂

a
1

5

'T
o

'T 5̂

Scalar to Vector

Scade textualGraphical

7 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

7

o =[1.00000,2.00000,3.00000]

o = [1,1,1,1,1]

Constructors

8 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Don’tDo

Constructors

[true,false,true]

(1.2 : float32)^8

[[a,b,c],[d,e,f],[g,h,i]]

‘b’^(M+N)

[[1.2_f32,2.6_f32],

[0.0_f32,2.14_f32]]

[(1.4_f64),(1.2_i8)]

‘c’^(3*a)

(N and M are defined as constant)

(a is not a constant)

9 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential
9

La
b

Make generic operators

Design with iterator constructs

Lab Objectives

Import external code

Generate code

10 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

10

P
re

re
q

u
is

it
e

Safety Critical Systems interact with their physical
environment.

They rely on sensors to observe their physical environment,
and on actuators to act on it.

A failure of a sensor or an actuator is a Single Point of Failure:
so they need to be redundant.

Prerequisites

Redundant Pitot sensors on a B737

11 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

11

P
re

re
q

u
is

it
e

A pitot tube is a pressure measurement instrument used to
measure fluid flow velocity.

It is widely used to determine the airspeed of an aircraft,
water speed of a boat, and to measure liquid, air and gas
velocities in industrial applications.

The pitot tube measures the local velocity at a given point in
the flow stream and not the average velocity in the pipe or
conduit.

Prerequisites
Wikipedia

12 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

12

P
re

re
q

u
is

it
e

Having redundant sensors means that from a range of values
one final value has to be determined.

A naive way to determine this value is to use the mean of
valid values.

A smarter way to do this is to use the median.

Prerequisites

Out of Order

326.2 325.6

638.3
Outlier value

Median

13 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

13

P
re

re
q

u
is

it
e

In statistics and probability theory, the median is the
numerical value separating the higher half of a data sample,
a population, or a probability distribution, from the lower
half.

The median of a finite list of numbers can be found by
arranging all the observations from the lowest value to the
highest value and picking the middle one:

The median of {3, 3, 5, 9, 11} is 5

If there is an even number of observations, then there is no
single middle value; the median is then usually defined to be
the mean of the two middle values, which corresponds to
interpreting the median as the fully trimmed mid-range:

The median of {3, 5, 7, 9} is (5 + 7) / 2 = 6

Prerequisites

14 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

14

The aim of this one day lab is to develop a median library
operator.

It needs to be able to work on a set of values (any size).

To be able to tell if a value is above or below another one,
these values need to have a sorting relation :

>
In Scade, this means that these values are numeric.

Lab Objectives

15 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

15

Objective:
Prepare the design environment and construct the simulation array.

Requirements:
Create a new SCADE Suite project:

Project Name: median

Package Name: MEDIAN

No library

Create two environment constants, under the MEDIAN package, to use
as:

AIRSPEED_SENSORS (type: float64^4) =[326.2, 325.6, 638.3, 323.9]

DISTANCE_SENSORS (type: uint8^6): =[45,49,35,33,44,43]

Lab 1: Requirement

Time: 5 min

16 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Array Access

’T ^N × ‘int → ’T

a[2]

’T ^N × ’int × ’T → ’T

(a.[i] default b)

’T ^N × I × J → ’T^(J – I + 1)

a[2..5]

a

1

[2]

'T N̂
s

'T

i

1

a
'T N̂

'int

b
'T

s
'T

1

2 5

a
'T N̂

s
'T (̂(5 - 2) + 1)

Static Projection

Dynamic Projection

Slice

Scade textualGraphical

17 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

17

o = 4

o = 0

o = [4,6,8,10,34]

Array Access

1

1 5

[2, 4, 6, 8, 10, 34, 57, 13] o

1

[1]

o[2, 4, 6, 8, 10, 34, 57, 13]

1

0

o[2, 4, 6, 8, 10, 34, 57, 13]

10

18 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Don’tDo

Array Access

a[8]

b[25]

(a.i default 8.6)

(b.32 default c)

a[4..7]

a[15]

b[not_constant]

(a.i default 5)

a[3.5..8]

b[20..35]

a: float32^10

b: int8^30

i: int8

c: int8

19 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

19

Objective:
Create the main operator and use array access operators.

Requirements:
Create a median operator, under MEDIAN package returning:

airspeed = airspeed_sensors[0]
distance = distance_sensors[5]

Generate the code, with KCG configuration (KCGAda for Ada target)

Observe the generated code and dimension matching.

Lab 2: Use Array Access Operators

Time: 10 min

Name Kind Type

airspeed output float64

distance output uint8

airspeed

distance

AIRSPEED_SENSOR[0]

DISTANCE_SENSORS[5]

20 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Can this work on arrays of

any type?

And of any size?

21 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Question

I want to write operators once, not each time for a specific
array element type and array size.

But at the same time I want to ensure type safety !

22 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Genericity

Abstract types and sizes at design time.

For each instance the tool will generate a different, type-safe
implementation : this process is named monomorphisation.

23 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Generic Types

Any type identifier starting by ’ is a generic type,

e.g. : ’T, ’Type, ’t, ’int, ’XxX, ’num, ’N, ’AnY …

The implementation type is unknown at design time.

This lets the designer free of the final usage and its concrete
types.

At code generation time, each different calling context will
lead to a different concrete implementation
(monomorphisation).

’T

24 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

24

Generic Operator

Operators with generic types

Some predefined operators are polymorphic:
o if-then-else, =, +, etc.

o Has inputs or outputs whose types are generic, i.e defined as
'GenericName

node GenericToggle(Input1 : 'T; Input2 : 'T)
returns (Output1 : 'T)

Input1Input1

Input2Input2

'T

'T

FBY

1 false

boolbool bool

Output1Output1
'T

25 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

25

Objective:
Create a generic function

Requirements:
Update the median function to be a generic function

Lab 3: Use a Generic Function (1/2)

Time: 10 min

Name Kind Type

value input ‘T

median output ‘T

values median
'T

26 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

26

Create a test operator to simulate several median instances

Lab 3: Use a Generic Function (2/2)

Name Kind Type

output1 ouput float64

output2 output uint8

1

medianAIRSPEED_SENSORS[0] output1

2

medianDISTANCE_SENSORS[5] output2

27 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Constrained Generic Types

It is possible to constrain a generic type to a narrower
definition:

Any

numeric

float integer

signed unsigned

28 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Constrained Generic Types

These constraints can be applied in the scope of an operator and
on imported types:

Select the required operator and from “Type Variables”:

29 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

29

Objective:
Constraint to numeric type

Requirements:
Constraint the median input type to be numeric

Lab 4: Constraint to Numeric Type

Time: 5 min

30 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Generic Size

Design operators treating arrays without knowing their size.

Operators can bear size parameters (abstraction of the size).

f<<N>>

mat_prod<<m,n,p>>(a:’T^n^m,b:’T^p^n) returns (c:’T^p^m)

max<<N>>(v:’T^N) returns (m:’T) where ‘T is numeric

not_v<<N>>(b:bool^N) returns (nb:bool^N)

31 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Parameterized Operators

not_v<<N>>(u:bool^N) returns (nu:bool^N)

max<<N>>(v:’T^N) returns (m:’T) where ‘T is numeric

mat_prod<<m,n,p>>(a:’T^n^m,b:’T^p^n) returns (c:’T^p^m)

1

not_v <<10>>u
bool 1̂0

nu
bool 1̂0

’T

’T^3^4

’T^3^4

’T^5^3

’T^5

32 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Parameterized Operators: Data Types

signed<<N>> : signed integer with N bits (N must be equal to 8, 16, 32 or 64)

unsigned<<N>> : unsigned integer with N bits

Two predefined types with a size parameter:
• To allow to define generic Scade nodes where the number of

bits of the parameter types can be manipulated as a size
parameter

• Useful for implementing Scade functions to encode bit
vectors

33 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Parameterized Operators: Data Types

Convert an unsigned to a bigger signed:
function safe_conv <<N>> (a: unsigned<<N>>) returns (x: signed<<2*N>>)
let

x = (a : signed<<2*N>>);
tel

34 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

34

Objective:
Prepare the median design environment

Requirements:
Modify the median implementation to work with arrays of any type and
of any size:

Instantiate it with 3 different array sizes/types

Update test operator
Observe the effects of monomorphisation in the generated code

Lab 5: Requirement (2/2)

Time: 10 min

35 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

35

Update test operator

Lab 5: Requirement (2/2)

Name Kind Type

input1 input uint8^10

output1 output float64

output2 output uint8

output3 output uint8

36 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Specialization

Define different behaviors for a polymorphic operator
depending on the interface type of its instances.

It must be an imported operator.

F()

f1() … fn()

37 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Polymorphism: Specialization

Specialized operator
declared as imported
(has at least one input
of generic type ‘T)

Specialization
operators

Instantiation
operators

38 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Array Operations

T^N*'T^M*...*'T^X -> 'T^(N+M+...+X)

a @ b

T^N-> T^N

reverse c

T^N^M^...^X*int*int -> T^X^M^...^N

transpose(a;1;2)

b

'T (̂N + M)
'T M̂

'T N̂ 1
a

u

1

c
'T N̂ M̂

v
'T N̂ M̂

1

1 2

c
'T N̂ M̂

x
'T M̂ N̂

Scade textualGraphical

39 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

o = [[2,3,4],[1,0,1],[34,57,13]]

o = [[1,0,1],[2,3,4]]

o = [[2,1],[3,0],[4,1]]

Array Operations

2

o
[[2, 3, 4], [1, 0, 1]]

[[34, 57, 13]]

1

[[2, 3, 4], [1, 0, 1]] o

1

1 2

[[2, 3, 4], [1, 0, 1]] o

40 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

40

Objective:
Create a mean operator in the median design environment

Requirements:
Create a specialized mean operator with specialization for integer and
floating values

Lab 6: Requirement (1/3)

Time: 10 min

Name Kind Type

a input ‘T

b input ‘T

m output ‘T

‘T is numeric

41 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

41

Create 2 specialized operators:

- meanInt

- meanReal

Lab 6: Requirement (2/3)

Name Kind Type

a input uint8

b input uint8

m output uint8

Name Kind Type

a input float64

b input float64

m output float64

42 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

42

Update test operator

Lab 6: Requirement (3/3)

Name Kind Type

input1 input uint8^10

output1 output float64

output2 output uint8

output3 output uint8

output4 output float64

output5 output uint8

43 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

AGENDA

Arrays

Iterators

Code Generation

Imported Code

44 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

How to apply

treatments to array

elements?

How to implement the sum of a

and b, arrays of 4 integers?

And of a,b: ’T^N?

Can we do that in a safe

and efficient way?

45 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

What do we Need?

A way to write Ԧ𝑐 = Ԧ𝑎 + 𝑏

∀ i ∈ [0..N-1], ci = ai + bi

Pointwise application of + to Ԧ𝑎 and 𝑏 vectors

46 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

46

Exercise 1

Objective:
Design the calculation to iterate

Requirements:
In a new Exercises project, implement the following function:

function elem_plus (a_i, b_i : ’T)
c_i = a_i + b_i ;

returns (c_i : ’T)

Time: 10 min

’T is numeric

47 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

47

Exercise 1: Solution

Create a new project named Exercises:
o Project Name: Exercises

o No library

Create a new operator: elem_plus
o Inputs: a_i, b_i:’T

o Output: c_i:’T

o ’T is numeric

a_i

b_i

1
c_i

48 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

…

…

a0

a1

…

ai

…

an

b0

b1

…

bi

…

bn

elem_plus

elem_plus

elem_plus

elem_plus

Pointwise Application of elem_plus

Ԧ𝑎 𝑏 Ԧ𝑐
c0

c1

…

ci

…

cN

49 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

a0

a1

…

ai

…

an

b0

b1

…

bi

…

bn

Pointwise Application of elem_plus

Ԧ𝑎 𝑏 Ԧ𝑐
c0

c1

…

ci

…

cN

map⟪N⟫

elem_plus

50 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

50

T, U and V : array of 5 integers

Pointwise Application of elem_plus

Equivalent expanded model

51 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Map Signature

f is a function of arbitrary signature:

Then the pointwise application of f over arrays of size N,
map⟪N⟫(f)has for signature:

’T
’U
…
‘V

’I
’J
…
‘K

’T^N
’U^N
…

‘V^N

’I^N
’J^N
…

‘K^N

1

f

Input1

Input2

Input3

Output1

Output2

Output3

'T

'U

'V

'I

'J

'K

52 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Applying Iterators

Iterators can be applied using
o A contextual menu

o The properties dialog of an operator

53 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

53

Exercise 2

Objective:
Use the map iterator

Requirements:
Implement the following operators:
vec_add (a,b:’T^N) returns (c:’T^N)

∀ i ∈ [0..N-1], ci = ai + bi

vec_incr (a:’T^N,incr:’T) returns (b:’T^N)

∀ i ∈ [0..N-1], bi = ai + incr

In all these cases, ’T is numeric

Time: 10 min

54 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

54

Exercise 2: Solution

Open the Exercises project

Create a new operator: vec_add
o Parameter: N

o Inputs: a, b:’T^N

o Output: c:’T^N

’T is numeric

Instantiate elem_plus operator and apply a map order N
(double click on operator under map, and replace 1 by N)

Create a “test” operator, where you instantiate vec_add for
arrays of 10 floating values

1

elem_plus

map<<N>>a

b

c

1

v ec_add<<10>>

a

b

c

55 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

55

Exercise 2: Solution

Create a new operator: vec_incr
Parameter: N

Inputs: a:’T^N, inc:’T

Output: c:’T^N

’T is numeric

Instantiate elem_plus operator and apply a map order N

Add an output to test operator, and instantiate elem_plus for
array of 10 floating values, run and play with the simulator

1

elem_plus

map<<N>>a

incr
1

N

c

1

v ec_incr<<10>>

a

1.0

d

56 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Can we use the result of

the prior iteration for the

next one?

How to specify that these

inputs/outputs are the

accumulator?

57 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

What do we Need?

Accumulator(s) to carry data from one iteration to the next
one

ii-1 i+1

A
cc

u
m

u
la

to
r(

s)
 in

A
cc

u
m

u
la

to
r(

s)
 o

u
t

58 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

What do we Need?

A way to model a stopwatch:

We need to use a carry to increment seconds, minutes, and
hours

59 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

59

Exercise 3

Objective:
Define the modCount operator

Requirements:
Implement the following modCount operator:

o Increment (+1) count on each incr until modulo is reached

o When modulo is reached, restarts from zero and outputs rippleClock

Time: 10 min

60 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

60

Exercise 3: Solution

Open the Exercises project
Create a new operator: modCount

o Inputs: incr: bool
modulo: integer

o Outputs: rippleclock: bool
count: integer

61 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

61

…

…

i0

i1

…

ii

…

iN

m0

m1

…

mi

…

mN

modCount

modCount

modCount

modCount

Pointwise Application of modCount

𝑖𝑛𝑐 𝑚𝑜𝑑𝑢𝑙𝑜 The map part 𝑐𝑜𝑢𝑛𝑡

c0

c1

…

ci

…

cN

62 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

62

…

…

modCount

modCount

modCount

modCount

Pointwise Application of modCount

accumulator

accumulator

…

accumulator

…

accumulator

accumulator initialization

The accumulator part

63 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

63

accumulator

accumulator

…

accumulator

…

accumulator

i0

i1

…

ii

…

iN

m0

m1

…

mi

…

mN

Pointwise application of modCount

𝑖𝑛𝑐 𝑚𝑜𝑑𝑢𝑙𝑜 accumulator initialization

…

…

modCount

modCount

modCount

modCount

𝑐𝑜𝑢𝑛𝑡

c0

c1

…

ci

…

cN

64 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

64

mapfold⟪N⟫

modCount

Pointwise application of modCount

𝑐𝑜𝑢𝑛𝑡

accumulator

accumulator initialization
c0

c1

…

ci

…

cN

i0

i1

…

ii

…

iN

m0

m1

…

mi

…

mN

𝑖𝑛𝑐 𝑚𝑜𝑑𝑢𝑙𝑜

65 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

65

Pointwise application of modCount

time[0]: hundredth of second

time[1]: seconds

time[2]: minutes

time[3]: hours

66 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

66

Pointwise Application of ModCount

Equivalent expanded model
map component

fold component

map component

fold component

67 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Mapfold

Any number of accumulators (>=0)
o Behaves as a map for accumulator = 0

Array bound

68 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

68

Mapfold: 2 Accumulators

69 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

69

Exercise 4

Objective:
Apply the mapfold iterator

Requirements:
Apply mapfold on modCount operator to implement the stopwatch

Time: 10 min

70 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

70

Exercise 4: Solution

Open the Exercises project

Create a new operator: Chrono
• Parameter: N

• Inputs: hundredthSecond: bool, modulo: int32^N

• Outputs: timeOut: bool, time: int32^N

Instantiate modCount operator and apply a mapfold order N

Add inputs and outputs to the “test” operator and instantiate
Chrono

71 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

I don’t need to use the map

result…

Are there other iterators?

72 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

What do we Need?

A way to write

Pointwise application of . to Ԧ𝑎 and 𝑏 vectors

N

i

ii baba
1

..

73 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Fold

Let f be a function of arbitrary signature :

’Accumulator ×’T × ’U × … × ’V → ’Accumulator

Then the pointwise application of f over arrays of size N,
fold⟪N⟫(f) has for signature:

’Accumulator × ’T^N × ’U^N × … × ’V^N → ’Accumulator

74 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

…

…

a0

a1

…

ai

…

an

b0

b1

…

bi

…

bn

CumulProd

CumulProd

CumulProd

CumulProd dotProduct

Pointwise Application of CumulProd

Ԧ𝑎 𝑏

accumulator

accumulator

…

…

accumulator initialization

75 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

a0

a1

…

ai

…

an

b0

b1

…

bi

…

bn

fold⟪N⟫

CumulProd

Pointwise Application of CumulProd

Ԧ𝑎 𝑏

dotProduct

accumulator initialization

76 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

The Dot Product: fold => mapfold

Only the accumulator result is useful:

Use directly mapfold

77 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

77

Objective:
Create a min operator with a mapfold, in the median design
environment

Requirements:
Create an operator that provides the minimal numeric value between
two inputs.

Instantiate the min operator in the median operator to provide the
minimal numeric value of an input vector.

min<<N>>(v:’T^N) returns (m:’T)

Lab 7: Accumulator (1/3)

’T is numeric

Time: 10 min

78 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

78

Design a min_2 operator

Design the min operator

Lab 7: Accumulator (2/3)

acc_in

v

acc_out

1

1acc_in

v

'T

'T

bool

'T

'T

'T

Name Kind Type

v input ‘T^N

m output ‘T

Name Kind Type

Acc_in input ‘T

v input ‘T

m output ‘T

79 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

79

Udpate the median operator

Lab 7: Accumulator (3/3)

median

1

min<<N>>v alues

80 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

80

Objective:
Complete the useful operators for the median computation.

Requirements:
Create the following operators (use mapfold):

Find the maximal numeric value between two values
• max(acc_in:’T,a:’T) returns (acc:’T)

Count the number of values greater than the reference value in an input
vector

• Count_gt(acc_in: uint8, ref:’T, a:’T^N) returns (acc:uint8)

Count the number of values lower than the reference value in an input vector
• Count_lt(acc_in:uint8, ref:’T, a:’T^N) returns (acc:uint8)

Lab 8: Accumulator

Time: 20 min

’T is numeric

81 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

The mapi Iterator

It is the same iterator as map but with an index of iteration
passed as the first input of the mapped operator (in the
order of the interface).

The first input of the mapped operator is the index:

Example: toggle Booleans in even cells.

[false,false,true,true,false][true,false,false,true,true]

i

FlagOutArray[true, f alse, f alse, true, true]

1

ToggleEv en

mapi<<5>>

i
bool 5̂

bool 5̂

indexindex
MOD

2
0

f laginf lagin
f lagoutf lagout

82 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

The foldi Iterator

Same as the fold iterator, with the iteration index passed as
the first input of the mapped operator (in the order of the
interface).

The accumulator is passed as the second input:

Example: logical OR between even cells.

true[false,true,false,true,true]

i

a

indexindex
MOD

2
0

v aluev alue
oroutorout

accinaccin

83 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

The mapw/mapwi Iterator

Apply the map over an operator under a condition.

The condition may depend on the index, accessible on the
first input with the mapwi.

Example: add 3 at the end of a list.

Condition for the
continuation of the
iteration

Default value used to
fill the end of the array
when the iteration is
interrupted

Exit index for the first
unprocessed iteration

84 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

The foldw/foldwi Iterator

Apply the fold over an operator under a condition.

The condition may depend on the index, accessible on the
first input with foldwi.

Example: search a value (5) in an array.
Exit index for first
unprocessed iteration

condition for the
continuation of the
iteration

85 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

map
fold

mapfold
mapi/w/wi
foldi/w/wi

mapfoldi/w/wi

map
Apply to an operator on a vector of inputs

producing a vector of outputs

To Summarize
The different iterators are…

fold
Apply to an operator on a vector of inputs

producing a single output as accumulated results
of the operator calls

Partial iterators (w)
• Generated code can be not optimized
• Exit from a bounded loop does not provide
some benefit for the Worst Case Execution Time

86 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

86

Objective:
Complete the median design

Requirements:

Use the Torben algorithm to complete the design of the median

Lab 9: Torben Algorithm

Time: 25 min

87 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

87

P
re

re
q

u
is

it
e

http://ndevilla.free.fr/median/median/index.html

Median filtering is a commonly used technique in signal
processing. Typically used on signals that may contain
outliers skewing the usual statistical estimators, it is usually
considered too expensive to be implemented in real-time or
CPU-intensive applications.

In a safety environment, the worst case execution time
(WCET) is more important than the best execution time. Also,
we prefer to avoid the large memory copy even if the
algorithm is slower.

Lab 9: Prerequisite

http://ndevilla.free.fr/median/median/index.html

88 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

88

P
re

re
q

u
is

it
e

Torben’s Algorithm

75

12

34

24

…

13

21

78

1. Start by finding max and min values
2. And make a guess : the median should

be the mean between this min and max

value :
𝑚𝑖𝑛+𝑚𝑎𝑥

2

3. min = 12, max = 78, guess = 45

89 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

89

P
re

re
q

u
is

it
e

Torben’s Algorithm

75

12

34

24

…

13

21

78

1. min and max represent the minimal and
maximal value of the algorithm.

2. We now count the number of values
that are lower than our guess ant the
number that are above our guess :
5 are smaller than 45, 2 are above

3. This means that our median is between
our guess and the previous min value:
we can use our guess as the new max
value. We can even improve this by
using the value immediately below our
guess as the new max (as our max is
possibly not present in our lis)

4. The value immediately below 45 is 34,
this becomes our new max

90 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

90

P
re

re
q

u
is

it
e

Torben’s Algorithm

75

12

34

24

…

13

21

78

1. Our new guess is then (12+34)/2 = 23
2. below = 3, above = 4
3. The definition of the median is to have as

many above than below. So we know in
this case that our median is the value
immediately above our guess, that is 24

4. This is an n logn algorithm

91 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

91

P
re

re
q

u
is

it
e

min and max initialization

guess computation

counting the distribution
around guess value,
select new min and max

stop condition

final median value

Lab 9: Prerequisite (C Code)

92 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

92

P
re

re
q

u
is

it
e

C code algorithm

SCADE Suite model already designed
Use mapfold

Lab 9: Prerequisite (C Code)

1

max_2

fold<<N>>

a
v

v [0]
M

1

min_2

fold<<N>>

a
v

m
v [0]

1

count_lt_2

fold<<N>>0

v count

guess ̂N

1

count_gt_2

fold<<N>>a0

v count

guess ̂N

93 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

93

P
re

re
q

u
is

it
e

min and max initialization

guess computation

counting the distribution
around guess value,
select new min and max

stop condition

final median value

Lab 9: Prerequisite (Ada) Ada

94 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

94

P
re

re
q

u
is

it
e

SCADE Suite model already designed

Lab 9: Prerequisite (Ada) Ada

95 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

95

So
lu

ti
o

n

You need to implement a new min/max selection and the

median value finalization

1- Implement “above” operator to define new min/max value for next

iteration:

above_2(accIn,v,guess:’T) returns (accOut:’T)

above<<N>>(max:’T,v:’T^N,guess:’T) returns (mingtguess:’T)

Lab 9: Solution

acc_out
1

v > guess

v < acc_in

1

v

acc_in

1

abov e_2

fold<<N>>amax

v

guess ̂N

mingtguesss

96 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

96

So
lu

ti
o

n

2- Implement the “below” operator to define new min/max
value for next iteration:

below_2(accIn,v,guess:’T) returns (accOut:’T)

below<<N>>(min:’T,v:’T^N,guess:’T) returns (maxltguess:’T)

Lab 9: Solution

acc_out
1

v < guess

v > acc_in

1

v

acc_in

1

below_2

fold<<N>>amin

v

guess ̂N

maxltguesss

97 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

97

So
lu

ti
o

n

3- Create “guess<<N>>” operator to compute the median.
o This operator is mapfoldw to find the median value

o The accumulator is min and max value, stored in array

guess<<N>>(accIn:’T^2,v :’T^N) returns (continue:bool,accOut:’T^2)

Lab 9: Solution

continue

guess

v

guess
greater

v

guess
less

max

v

1

abov e<<N>>

guess

mingtguess

guess

min
1

below<<N>>v maxltguess

N + 1 1

2
half

1less <= half

greater <= half

1

accIn[1]

accIn[0]

<If Block1>

accOut = [mingtguess, max];

accOut = [min, maxltguess];

less > greaterless > greater

<If Block2>

accOut = [mingtguess, mingtguess];

accOut = [guess, guess];

N - greater >= halfN - greater >= half

accOut = [maxltguess, maxltguess];

less >= halfless >= half

breakbreak

2

count_gt<<N>>

2

count_lt<<N>>

2

mean

break

min

max

98 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

98

So
lu

ti
o

n

4- Complete median<<N>> operator:
median<<N>>(v:’T^N) returns (m:’T)

5- Test median<<N>> operator (you can use the current
created environment):

Lab 9: Solution

m

v

v

1

guess<<N>>

foldw<<N>>

a

true

v ̂N

3

[0]

1

2

min<<N>>

2

max<<N>>

AIRSPEED_SENSORS output1

DISTANCE_SENSORS output2

output3input1

4

median<<4>>

5

median<<6>>

6

median<<10>>

f loat64 4̂ f loat64

uint8uint8 6̂

int32 1̂0 int32

99 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

AGENDA

Arrays

Iterators

Code Generation

Imported Code

100 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

How is the SCADE Suite

generated code optimized?

How to integrate a SCADE

Suite design in a system?

101 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

SCADE Suite KCG

Qualifiable/certified code generator

Generated code properties:
o Readable, traceable (names propagation and annotations)

o Portable (independent from the target and the system scheduler)

o Modular

o Static memory allocation

o Finite execution duration

o Size optimizations

102 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

SCADE Suite KCG Architecture

SCADE Suite KCG take as input a SCADE Suite model

SCADE Suite KCG front-end

• Transforms the multi-files model into
one SCADE Suite Program

• Prunes out the graphical information

• Propagates the selected annotations

• Performs syntax and semantics checking

SCADE Suite KCG middle-end: core
compilation, optimizations

SCADE Suite KCG back-end

• Generates C/Ada code

• Generates the traceability files

103 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

SCADE Suite KCG Code Generator

104 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

104

Objective:
Understand the generated files

Requirements:
Generate KCG code of your median design, with default options

Observe the generated files (in KCG or KCGAda directory)

Lab 10: KCG

Time: 10 min

105 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

C Code Generation Files

<Target Directory> folder contains:
o kcg_types.h: declarations of basic Scade types, user-defined types,

Structures for the state machines;

o kcg_types.c: macros definition of array copy;

o kcg_const.h: declaration of constants;

o kcg_const.c: implementation of constants;

o kcg_sensor.h: declaration of sensor inputs;

o <root>_<path>.h: declaration of:

• I/Os root operator structures and sub-operators ones

• <root >_init_<path>, <operator>_reset_<path> and <root>_<path>
functions

o <root>_<path>.c: Implementation of:

• <root>_init_<path>

• <root>_reset_<path>

• <root>_<path>

106 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ada Code Generation Files

The default definitions (predefined types, …) are not
generated but are contained in

o kcg_config.ads located under
<installation>\SCADE\include\Ada

o Kcg_config.adb located under <installation>\SCADE\lib\Ada

Ada

107 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ada Code Generation Files

<Target Directory> folder contains:

o kcg_types.ads: manifest user-defined types as subtype,

structures for the state machines as type;

o <package-path>.ads: Ada specification for non-imported
elements (non-expanded operators)
• Non-manifest Scade types as subtypes

• Constants

• I/Os root operator and sub-operators structures (output contexts)
as type

• init, reset and cyclic procedures for root and sub-nodes

• Function if the non expanded Scade function is not the root
operator and returns a single output otherwise a procedure

Ada

108 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ada Code Generation Files

o <package-path>.adb: Ada implementation (body) for
non-imported and non-expanded operators:
• init, reset and cyclic Ada procedures for root and sub-nodes

• Ada function if the Scade function is not the root operator and
returns a single output otherwise a procedure

• The cyclic Ada procedures and functions are generated as
separate compilation units into <package-path-operator>.adb

• The reset / init Ada procedures are generated as separate
compilation units respectively into <package-path-
operator>_reset/init.adb

Ada

109 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

109

N1

N2

N3

N1

N2

N3

SCADE Design

110 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

110

Root Operator: N1.h
N1

N2

N3

N1

N2

N3
Input context: Structure with root node inputs

Output context
• Structure with root node

outputs and memories
• Sub-nodes contexts

Cyclic, reset and initialization
functions

111 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

111

Root Operator: N1.c

N1

N2

N3

N1

N2

N3

initialization and reset functions
Note: N3 is declared as a function (it has no
memory as opposed to the node)

Cyclic function

112 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

112

Sub-Operators Implementation C File

Scade function with one scalar output:
• Cyclic C function with inputs passed as parameters and returning the

output value

Scade function with several outputs:
• Cyclic C void with inputs and outputs passed as parameters

• No reset and initialization C function for SCADE Suite function

Scade node with one or several outputs:
• Cyclic C void with inputs passed as parameters, outputs and memories

passed in a context

113 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

113

Initialization, Reset and Cyclic C Functions

void N1_reset(outC_N1 *outC)

{

/* 1 */N2_reset(&outC->Context_1);

}

void N1_init(outC_N1 *outC)

{

outC->Output1 = kcg_true;

N2_init(&outC->Context_1);

}

void N2_reset(outC_N2 *outC)

{

outC->init = kcg_true;

}

void N2(/* N2::Input1 */ kcg_bool Input1,

outC_N2 *outC)

{

if (outC->init) {

outC->Output1 = kcg_true;

}

else {

outC->Output1 = Input1;

}

outC->init = kcg_false;

}

void N1(inC_N1 *inC, outC_N1 *outC)

{

/* N1::_L1 */ kcg_bool _L1;

/* 1 */ N2(inC->Input1, &outC-

>Context_1);

_L1 = outC->Context_1.Output1;

outC->Output1 = /* 1 */ N3(_L1, inC-

>Input2);

}

void N2_init(outC_N2 *outC)

{

outC->init = kcg_true;

outC->Output1 = kcg_true;

}

114 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

114

Ada Package specification: .ads

Output contexts
• Structure with root node

outputs and memories
• Sub-nodes contexts

Reset, init and cyclic procedures
Cyclic functions

Ada

N1

N2

N3

N1

N2

N3

115 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

115

Root Operator Ada Body Files

N1

N2

N3

N1

N2

N3

<package>-n1.adb

<package>-n1_init.adb

Cyclic function

Initialization procedure

<package>- n1_reset.adb

Reset procedure

Ada

116 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

116

Sub-Operator Body Ada File

Scade function N3 with one scalar output:

o Cyclic Ada function with inputs passed as
parameters and returning the output value

Scade function N4 with several outputs:

o Cyclic Ada procedure with inputs and
outputs passed as parameters

Scade function:

o No reset and initialization Ada procedures
and functions

Ada

117 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

117

Sub-Operator Body Ada Files

Scade node with one or several outputs:
Cyclic Ada procedure with inputs passed as parameters, outputs and
memories passed in a context

Init and reset Ada procedures into _init.adb and _reset.adb separate
files

Ada

118 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

How to customize the code

generation to optimize size

memory or performance?

119 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

General Options

Root operator (-node <nodename>)

o Select root operator(s) for code generation

Code Generator: C or Ada

Target dir (-target_dir <dirname>)

o Specifies the generation directory

Set warnings as errors (-warn_error)

o Manage warnings as errors

Not qualified / certified SCADE Suite KCG options:

o Skip unused model objects

• Generates code related only to the call graph of the selected root node

o Skip disabled model objects

• Generates code related only to the packages, operators and operators diagrams
that are not disabled (a Browse button allows to select the elements to disable)

120 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Compiler Options

CPU Type:
o Select win32 or win64 bits code generation

Compiler:
o Select Mingw GNU C (by default) or

a version of installed Visual C compilers

Preprocessor definitions
o Specifies preprocessor definitions

Additional compiler options
o Specifies more compiling options

Additional linker options
o Specifies more linker options

Note: separate list items with a space and use quotes if an item contains
spaces. Items must be compliant with the Tcl language format

121 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Expansion Options

All (-expall)
o This option specifies that all operators

except the root operator are expanded
during code generation

Selected
(-exp [identifierlist])

o This option specifies operators
that you want to be expanded

All except selected
(-noexp [identifierlist])

o This option specifies operators that you want to be non-expanded
o By default, operators are not expanded
o The –exp and -noexp options cannot be applied to the root operator

122 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

122

Expansion: CPU vs. Memory (C Code)

Functional (non-expanded)
Each SCADE Suite operator is generated as a C function.

Expanded
Each SCADE Suite operator call is expanded.

N1 {

…

Code for N2 and N3,

possibly optimized

…

}

N2() {…}

N3() {…}

N1() {

…

N2();

…

N3();

…

}

Expansion (inline mode)No expansion (call mode)

SCADE Suite description

N1

N2 N3

123 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

123

N1

N2

N3

Expansion: CPU vs. Memory (C Code)

Expansion per operator (except always root node)

N1

N2

N3

124 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

124

Expansion: CPU vs. Memory (C Code)

N2 and N3 non-expanded

N2 non-expanded, N3 expanded

void N1(inC_N1 *inC, outC_N1 *outC)

{

N2(inC->Input1, &outC->Context_1);

outC->Output1 = N3(outC->Context_1.Output1, inC->Input2);

}

Call to the N2 operator code

Call to the N3 operator code

void N1(inC_N1 *inC, outC_N1 *outC)

{

N2(inC->Input1, &outC->Context_1);

outC->Output1 = outC->Context_1.Output1 & inC->Input2;

}

Call to the N2 operator code

Code for the N3 operator

125 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

125

Expansion: CPU vs. Memory (C Code)

N2 and N3 expanded

void N1(inC_N1 *inC, outC_N1 *outC)

{

kcg_bool tmp;

if (outC->init) {

outC->init = kcg_false;

tmp = kcg_true;

}

else {

tmp = inC->Input1;

}

outC->Output1 = tmp & inC->Input2;

}

Code for the N2 operator

Code for the N3 operator

126 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

126

Expansion: CPU vs. Memory (Ada)

Functional (non-expanded)
Each SCADE Suite operator is generated as a C function.

Expanded
Each SCADE Suite operator call is expanded.

N1()

…

begin

Code for N2 and N3,

possibly optimized

…

end N1

N2()begin…end N2

N3()begin…end N3

N1()

…

begin

…

N2();

N3();

…

end N1

Expansion (inline mode)No expansion (Call Mode)

SCADE Suite description

N1

N2 N3

Ada

127 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

127

N1

N2

N3

Expansion: CPU vs. Memory (Ada)

Expansion per operator (except always root node)

N1

N2

N3

Ada

128 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

128

Expansion: CPU vs. Memory (Ada)

N2 and N3 non-expanded

N2 non-expanded, N3 expanded

Call to the N2 operator code

Call to the N3 operator code

Code for the N3 operator
Call to the N2 operator code

Ada

129 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

129

Expansion: CPU vs. Memory (Ada)

N2 and N3 expanded

Code for N2 and N3 operator

Ada

130 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

130

Expansion vs Causality Loop

Feedback case:

KCG will detect a causality error if the Operator2 is not expanded: SCADE
language makes no assumptions on the content of an operator: => Non
information of which input is connected to which output

=> Non visibility on FBY that cut the feedback (“loop”) by a delay

KCG will generate the code without error if the Operator2 is expanded to
have that direct “loop”

Operator2

131 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

131

Objective:
Understand the KCG options.

Requirements:
Generate KCG code of your median design, with different options:

Change the target directory,

Modify the expansion options,

Generate the context as global,

Change the name length and significance length,

Select and prevent the optimization of a variable,

…

For each generation, observe the generated files (in KCG or KCGAda
directory).

Lab 11: KCG options

Time: 10 min

132 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

How to integrate the

system code in a software?

133 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Global Embedded System Architecture

Environment Application:

Reactive model

Embedded system

Buffer

External Environment

Handler

134 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Module Integration

Integration in an existing software:
• Write the main cyclic loop,

• Call the generated functions.

call the generated initialization function

begin_loop

wait for an event

treat the inputs

call the generated cyclic function

treat the outputs

end_loop

135 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Module Integration

Module integration is not unique but depends on the Code
Generator options:

• Generated files vary according to SCADE Suite KCG options,

• Communication between the generated code and the main application
depends on the SCADE Suite KCG options.

Module integration also depends on the basic types
implementation:

• The user could provide a user configuration file allowing to map the
scade basic types (kcg_bool, kcg_char, …) on specific C/Ada types (float,
double, signed short, signed long, unsigned short…)

136 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

C Mapping of Basic Scade Types

A default kcg_types.h file is generated in the target code
folder to map basic Scade types (kcg_float32, kcg_float64,
kcg_intN, kcg_uintN, …) to C types (with N=8,16,32,64)

Example:
#ifndef kcg_float32

#define kcg_float32 kcg_float32

typedef float kcg_float32;

#endif /* kcg_floaat32 */

#ifndef kcg_int8

#define kcg_int8 kcg_int8

typedef signed char kcg_int8;

#endif /* kcg_int8 */

137 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

C Mapping of Basic Scade Types

Users may redefine basic types (except char) by providing the
symbolic definition of the type (#define or typedef) in a user
configuration file

The path to this user configuration file has to be provided as
an option to SCADE Suite KCG

Example:
#ifndef kcg_int8
#define kcg_int8 kcg_int8

typedef signed short int kcg_int8;
#endif /* kcg_int8 */

#ifndef kcg_float64
#define kcg_float64 kcg_float64

typedef float kcg_float64;
#endif /* kcg_float64 */

138 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

138

Module Integration (C Code)

Communication between the generated code and the main
application: input context and output context

typedef struct {
kcg_bool /* System::SystemSimul::On */ On;
kcg_bool /* System::SystemSimul::Resume */ Resume;
kcg_bool /* System::SystemSimul::Set */ Set;
kcg_bool /* System::SystemSimul::QuickAccel */ QuickAccel;
kcg_bool /* System::SystemSimul::QuickDecel */ QuickDecel;
tPercent_CarType /* System::SystemSimul::Accel */ Accel;
tPercent_CarType /* System::SystemSimul::Brake */ Brake;

} inC_SystemSimul_System;

typedef struct {
/* --------------------------- outputs --------------------------- */
tSpeed_CarType /* System::SystemSimul::CruiseSpeed */ CruiseSpeed;
tCruiseState_CruiseControl /* System::SystemSimul::CruiseState */ CruiseState;
kcg_float32 /* System::SystemSimul::CarSpeed */ CarSpeed;
/* ----------------------- no local probes ----------------------- */
/* ----------------- no initialization variables ----------------- */
/* ----------------------- no local memory ----------------------- */
/* --------------------- sub nodes' contexts --------------------- */
outC_CarModel_Car /* 1 */ Context_1;
outC_CruiseControl_CruiseControl /* 2 */ Context_2;
/* ----------------- no clocks of observable data ------------------ */

} outC_SystemSimul_System;

139 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

139

C Module Integration
// Include the header file for the system_simul
#include "stdio.h"
#include "SystemSimul_System.h"

int main(int argc, char* argv[])
{
// Declare 2 variables of the system input/output context type

inC_SystemSimul_System inC;
outC_SystemSimul_System outC;

// Call the init function
SystemSimul_init_System(&outC);

// Make a Loop
do {
inC.Accel = 0.8;
inC.Set = kcg_true;

// Call the system C generated function //

SystemSimul_System(&inC,&outC);

printf("CruiseSpeed = %lf\n",outC.CruiseSpeed);
printf(“VehiculeSpeed = %lf\n",outC.VehiculeSpeed);

}
while (1);
return 0;

}

Treatment of the inputs

Contexts for the generated function

Generated file to include

M
a

in
 L

o
o

p

Call the generated init function

Call the generated cyclic function

Treatment of the outputs

140 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ada Mapping of Basic Scade Types

The predefined types definitions are not generated but are
contained in kcg_config.ads located under
<installation>\SCADE\include\Ada to map basic Scade types
(kcg_Float32, kcg_Float64, kcg_IntN, kcg_UintN, …) to Ada
types

with N=8,16,32,64

subtype Kcg_Float32 is Interfaces.IEEE_Float_32

subtype Kcg_Float64 is Interfaces.IEEE_Float_64

subtype Kcg_IntN is Interfaces.Integer_N;

subtype Kcg_UintN is Interfaces.Unsigned_N;

subtype Kcg_Char is Character;

subtype Kcg_Size is Integer;

Ada

141 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
a

m
p

le

141

Ada Module Integration
-- Include package files to use
with kcg_Config;
with Kcg_Types; with CartType; with System_1;

procedure Main()
is
-- Declare the system input parameters and output context

ctx: Context_SystemSimul;
brake; accel : CarType.tPercent;
quickDecel; quickAccel; set_1 : Boolean;
resumeCmd; on : Boolean;

begin
-- Call the init function

SystemSimul_Init(Ctx => ctx);

-- Make a Loop
while (Stop /=True) loop
accel := 0.8;
set_1: = False;
…..

-- Call the cyclic generated function
SystemSimul_Init(….; Ctx => ctx);

Ada.Text_IO.Put(Kcg_Config.Kcg_Float64’Image(ctx.CruiseSpeed));
Ada.Text_IO.Put(Kcg_Config.Kcg_Float64’Image(ctx.VehiculeSpeed));

end loop;

end Main;

Treatment of the inputs

Context for the generated function

Generated files to include

M
a

in
 L

o
o

p

Call the generated init function

Call the generated cyclic function

Treatment of the outputs

Declaration of inputs parameters

Ada

142 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

142

Exercise 5 (C Code)

Objective:
Create a program calling the C code generated by SCADE Suite.

Requirement:

Copy the Exercise 5 from the Prerequisite folder:

‒ The SCADE model computes the sliding mean, minimum and maximum
values of a real flow over 3 cycles

Generate the corresponding C code

Move Make.bat, main.c and kcg_assign.h (C folder) to the project level

Complete main.c and build it with all the generated files

Execute the binary you obtain and try to run a nominal behavior

Time: 15 min

143 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

143

Exercise 5: Prerequisite (C Code)

Step 1 – Generate The Code

Generate the code according to the following requirements:

• C files are generated in the folder EmbeddedCode

• Do not perform any expansion except for libraries

144 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

144

Exercise 5: Prerequisite (C Code)

Step 2 – Complete
The Main C Program

// TODO: Include the header file of M3C3

#include ""

int main(int argc, char* argv[])

{

// Local variable declarations

kcg_float64 value;

// TODO: Declare 2 variables of the M3C3

// input/output context type

// TODO: Call the generated initialization function

// with the address of the system

// context as a parameter

// Make a Loop

do

{

// Read the inputs

printf("Enter a real value : ");

scanf("%lf",&value);

// TODO: Fill the M3C3 input context with value

// TODO: Call the generated cyclic function

// with the address of the system

// context as a parameter

// TODO: Display the outputs

printf("Sliding values on 3 cycles\n");

printf(" Mean = %lf\n",);

printf(" Min = %lf\n",);

printf(" Max = %lf\n",);

} while (1);

return 0;

}

145 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

145

Exercise 5: Prerequisite (C Code)

Step 3 – Create And Execute The Binary
Move Make.bat, main.c and kcg_assign.h (C folder) to the project level

Compile the main C file you completed with all the generated files using
Make.bat

Execute the binary you obtain and try to run a nominal behavior

Tips
Insert into Make.bat:

“gcc -I. -IEmbeddedCode - "<SCADE Suite installdir>" main.c
EmbeddedCode*.c -o EmbeddedCode\main.exe”

146 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

146

Exercise 5 – Step 1: Solution (C Code)

1
2

147 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

147

Exercise 5 – Step 2: Solution (C Code)
// Include the header file of M3C3

#include "M3C3.h"

int main(int argc, char* argv[])

{

// Local variable declarations

kcg_float64 value;

// Declare 2 variables of the M3C3

// input/output context type

inC_M3C3 inM3C3Context;

outC_M3C3 outM3C3Context;

// Call the generated initialization function

// with the address of the system

// context as a parameter

M3C3_init(&outM3C3Context);

// Make a Loop

do

{

// Read the inputs

printf("Enter a real value : ");

scanf("%lf",&value);

// Fill the M3C3 input context

inM3C3Context.U = value ;

// Call the generated cyclic function

// with the address of the system

// contexts as a parameter

M3C3(&inM3C3Context, &outM3C3Context);

// Treat the outputs

printf("Sliding values on 3 cycles\n");

printf(" Mean = %lf\n",outM3C3Context.MeanOn3Cycles);

printf(" Min = %lf\n",outM3C3Context.MinOn3Cycles);

printf(" Max = %lf\n",outM3C3Context.MaxOn3Cycles);

} while (1);

return 0;

}

148 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

148

Exercise 5 - Step 3: Solution

149 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

149

Exercise 5 (Ada)

Objective:
Create a program calling the Ada code generated by SCADE Suite.

Requirement:

Copy the Exercise 5 from the Prerequisite folder:

• The SCADE model computes the sliding mean, minimum and maximum values
of a floating flow over 3 cycles

Generate the corresponding Ada code

Move MakeAda.bat, main.adb (Ada folder) to the project level

Complete main.adb

Compile it with all the generated files

Execute the binary you obtain and try to run a nominal behavior

Time: 15 min

Ada

150 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

150

Exercise 5: Prerequisite (Ada)

Step 1 – Generate The Code

Generate the code according to the following requirements:

• Ada files are generated in the folder EmbeddedCodeAda

• Do not perform any expansion except for libraries

Ada

151 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

151

Exercise 5: Prerequisite (Ada)

Step 2 – Complete
The Main Procedure

-- TODO Include package files to use

procedure Main()

is

-- Local variable declarations

U: Kcg_Config.Kcg_Float64:=0.0;

-- TODO: inputs and outputs declaration

package Kcg_Float64_Text_IO is new Ada.Text_IO.Float_IO

(Kcg_Config.Kcg_Float64);

begin

-- TODO: Call the generated initialization function

-- Make a Loop

while (U/=-1.0) loop

-- Read the inputs

Ada.Text_IO.Put_Line("Enter a real value: ");

Kcg_Float64_Text_IO.Get(U);

-- TODO: Call the generated cyclic function

-- TODO: Display the outputs

Ada.Text_IO.Put_Line("Sliding values on 3 cycles");

Ada.Text_IO.Put_Line("Mean = "&);

Ada.Text_IO.Put_Line("Min = "&);

Ada.Text_IO.Put_Line("Max = "&);

end loop;

end Main;

Ada

152 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

152

Exercise 5: Prerequisite (Ada)

Step 3 – Create And Execute The Binary

Move MakeAda.bat, main.dab (Ada folder) to the project
level

Compile the main body file you completed with all the
generated files using MakeAda.bat

Execute the binary you obtain and try to run a nominal
behavior

Tips
Insert into MakeAda.bat:

“gnatmake -I“<installation>/SCADE R17/SCADE/include/Ada" -
“<installation>/SCADE R17/SCADE/lib/Ada" -I"EmbeddedCodeAda" -D
"./obj" main.adb”

Ada

153 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

153

Exercise 5 – Step 1: Solution (Ada)

2

1

Ada

154 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Ex
er

ci
se

154

Exercise 5 - Step 3: Solution

155 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

How can I use legacy

code?

Is it possible to use the

SCADE Suite Simulator

with imported code?

156 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

What do we Need?

Import torben function in the target code in SCADE Suite:
o elem_type torben(elem_type m[],int n), C code

o torben(m:Kcg_Types.Float64_Range_0_3; n:Integer)

return Kcg_Config.Kcg_Float64, Ada code

Test the SCADE Suite median design

Improve the genericity of the median operator

157 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Imported Operators

They are used to implement in the host language operators
not suited for SCADE Suite modeling or already existing such
as legacy code:

Right-click on Operators folder in Scade View

Select Insert > Imported Operator

The operator can be a function or a node (with memory):

158 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Imported Operators

The operator’s name and interface are defined in SCADE
Suite.

Its body is defined in the host language.

It graphically appears as a box with a vertical bar on the left
hand side.

It is called in following the data flow order.

159 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Imported Operators: Functions (C Code)

Outputs only depend on inputs:

kcg_float32 ImpCOS(kcg_float32 Input1,kcg_float32 Input2)
{

kcg_float32 Output1;
Output1 = cos (Input1 + Input2);
return Output1;

}

160 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

C Imported Function Implementation

KCG generates a kcg_imported_functions.h file containing
the function prototypes for the imported function operators

#ifndef ImpCOS
/* ImpCOS */
extern kcg_float32 ImpCOS(
/* ImpCOS::Input1 */ kcg_float32 Input1,
/* ImpCOS::Input2 */ kcg_float32 Input2);

#endif /* ImpCOS */
#endif

In the Properties window, specify the name of the source file
for the simulation purpose

161 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Imported Operators: Functions (Ada)

One Output only depends on inputs:

function ImpCOS(
Input1 : in Kcg_Config.Kcg_float32;
Input2 : in Kcg_Config.Kcg_float32) return Kcg_Config.Kcg_float32

is
Output1 : Kcg_Config.Kcg_float32;

Begin
Output1:= cos (Input1 + Input2);

return Output1;
end ImpCOS;

Ada

162 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

KCG generates .dads and .dadb files containing the function
prototypes for the imported function operators, users must
complete and move them to .adb and .ads files

In the Properties window, specify the name of the body
source file for the simulation purpose

Imported Function Implementation (Ada) Ada

163 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

163

Objective:
Import and simulate code

Requirements:

Use the torben() function (median_c.c or median_a.adb file)
to test your design

Add a test with the imported function and simulate

Lab 12: Imported Operator

Time: 15 min

164 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

164

So
lu

ti
o

n

You need to encapsulate the torben function to use in your

SCADE design

In Prerequisites\median_c.c file, below torben definition

function, create the function:

kcg_float64 torben_real_4_Up(kcg_float64 m[4])

{

elem_type array[4];

int i;

for (i=0; i<4; i++)

array[i] = m[i];

return (kcg_float64) torben(array, 4);

}

Lab 12: C Wrapping Function

165 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

165

So
lu

ti
o

n

Create the imported function (into Up package)
o torben_real_4(array: float64^4) returns (median: float64)

Lab 12: Imported SCADE Function (C Code)

166 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

166

So
lu

ti
o

n

You need to encapsulate the torben function to use in your

SCADE design:

In Prerequisites\median_a.adb file, below torben definition

function, create the function:

-- Up::torben_real_4/

function torben_real_4(

-- array/

array_1 : in Kcg_Types.Float64_Range_0_3) return Kcg_Config.Kcg_Float64

is

median_2 : Kcg_Config.Kcg_Float64;

begin

median_2 := torben(m=>array_1,n=>3);

return median_2;

end torben_real_4;

Lab 12: Ada Wrapping Function Ada

167 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

167

So
lu

ti
o

n

Create the imported function into Up package:
o torben_real_4(array: float64^4) returns (median : float64)

Lab 12: Imported SCADE Function (Ada) Ada

168 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

La
b

168

So
lu

ti
o

n

Test torben_real_4 imported operator in “test” operator:

Lab 12: Imported SCADE Function

AIRSPEED_SENSORS output1

3

median<<4>>

1

torben_real_4 output4

169 © 2016 ANSYS, Inc. February 1, 2017 ANSYS Confidential

Make generic operators

Design with iterator constructs

Conclusion
We have learned how to…

Import external code

Integrate the generated code

Generate embedded code

Contacts

Legal Contact
Esterel Technologies SAS
14/15, Place Georges Pompidou
78180 Montigny Le Bretonneux
FRANCE
Phone: +33 1 30 68 61 60
Fax: +33 1 30 68 61 61

Technical Support
Esterel Technologies SAS
Parc Avenue - 9 rue Michel Labrousse
31100 Toulouse FRANCE
Phone: +33 5 34 60 90 50
Fax: +33 5 34 60 90 41

Submit questions to Technical Support: scade-support@ansys.com

Contact one of our Sales representatives at: scade-sales@ansys.com
Direct general questions about Esterel Technologies to: scade-info@ansys.com

Discover the latest news on our products and technology at: http://www.ansys.com/products/embedded-software

Legal Information

Copyrights ©2017 ANSYS, Inc. All rights reserved. ANSYS®, SCADE®, SCADE Suite®, SCADE Display®, SCADE
Architect®, SCADE LifeCycle® are trademark or registered trademarks of ANSYS, Inc or its subsidiaries in
the U.S. or other countries. All other trademarks and trade names contained herein are the property of
their respective owners.

mailto:scade-support@ansys.com
mailto:scade-sales@ansys.com
mailto:scade-info@ansys.com
http://www.ansys.com/products/embedded-software

