
Code Smells in Software Product Lines

Wolfram Fenske1 and Sandro Schulze2
wfenske@ovgu.de sanschul@tu-braunschweig.de

1University of Magdeburg, Germany
2TU Braunschweig, Germany

Introduction

This document is supplementary to a survey we send to participants of the
FOSD meeting 2014 about code smells in software product lines. It contains
the description of six code smells that take variability into account as first-
class concept, leading to variability-aware code smells. Although a comprehensive
empirical study is missing for most of these code smells, we argue that these
smells may impede evolution and maintenance of SPLs.

For each code smell, we denote the original code smell together with its de-
scription (based on Fowler’s refactoring book). Then, we provide a description
of the variability-aware smell and why we think that it is a smell. Moreover, we
mention whether this smell is independent of the variability mechanism or spe-
cific to composition-based or annotation-based variability1. Finally, we provide
an example for the variability-aware code smell, either by an exemplary code
fragment or, if this is not possible for some reason, by an exemplary scenario.

1 Inter-Feature Code Clones

Derived from: Duplicated Code

Original description

Number one in the stink parade is duplicated code. If you see the same
code structure in more than one place, you can be sure that your program
will be better if you find a way to unify them.

Variability-Aware Description: Duplicated code in software product lines can
appear in two variaties: First, code may be duplicated within a feature. We
call these intra-feature code clones. They are similar in nature to code clones
in traditional single-system engineering. Consequently, they are not interesting
from an SPL point of view.

More interesting is the second case, when code is duplicated across different
features. That is, there are two or more features in the product line which contain
1 Note, that we currently focus on FOP for composition-based and C preprocessor for

annotation-based variability

mailto:wfenske@ovgu.de
mailto:sanschul@tu-braunschweig.de

2 Wolfram Fenske and Sandro Schulze

similar code. This is the smell we call Inter-Feature Code Clones. As a
result of this duplication, maintenance (e.g., consistent change of duplicated
code fragments) may be hindered.

Applies to: Annotation-based and composition-based implementation techniques

Example: Listing 1.1 shows an example from the Graph Product Line (GPL)
(Lopez-Herrejon and Batory, GCSE 2001). The GPL uses feature-oriented pro-
gramming (FOP). In the example, both, feature BFS and DFS, contain an exact
clone of the search method.

Listing 1.1. Code Clones in the Graph Product Line

// Feature ’BFS’
public class Graph {
public void search(Workspace w) {
VertexIter vxiter = getVertices();
if (vxiter.hasNext() == false) return;
while (vxiter.hasNext()) {

Vertex v = vxiter.next();
v.init_vertex(w);

}
/∗ more source code... ∗/

}
/∗ more source code... ∗/

}

// Feature ’DFS’
public class Graph {
public void search(Workspace w) {
VertexIter vxiter = getVertices();
if (vxiter.hasNext() == false) return;
while (vxiter.hasNext()) {

Vertex v = vxiter.next();
v.init_vertex(w);

}
/∗ more duplicated source code... ∗/

}
/∗ more source code... ∗/

}

Code Smells in Software Product Lines 3

2 Long Refinement Chain

Derived from: Long Method

Original description

Since the early days of programming people have realized that the longer
a procedure is, the more difficult it is to understand.

Variability-Aware Description: If a method is refined by many features, it is
hard to understand what the effective method implementations may look like in
different configurations. Moreover, creating a new refinements is difficult, because
it is not obvious which information the new refinement is built on (since this is
configuration-specific). Hence, understanding an frequently refined method is
difficult and thus, evolution (e.g., extending this method) may be influenced in
a negative way.

Applies to: Composition-based implementation techniques

Examples: In the GUIDSL, method process(Model) of class Main is introduced
as an empty stub by feature dmain. It is subsequently refined by five other fea-
tures (fillgs, propgs, formgs, clauselist, modelopts), whereas the average refine-
ment depth is lower than one (i.e., most of the methods are never refined). Each
refinement contains a call to original() and between three to nine additional
lines of code. Most of these refinements can occur in different combinations, de-
pending of the feature selection. Hence, when extending one of these methods
or adding a new refinement, you must be aware of all existing refinements and
possible side effects of changing or adding code.

4 Wolfram Fenske and Sandro Schulze

3 Annotation Bundle

Derived from: Long Method

Original description

Since the early days of programming people have realized that the longer
a procedure is, the more difficult it is to understand.

Variability-Aware Description: Annotation Bundle is a smell very similar
to Long Refinement Chain, but applies to annotation-based implementa-
tion techniques. It describes a method that contains an overly large amount of
annotated code, compared to the total lines of code (of this method). More-
over, many different preprocessor directives/expressions are used (maybe even
nested), meaning that many different features control the presence or absence
of the annotated statements. Hence, it is difficult to understand the method for
a certain configuration or in its entirety. Similar to Long Refinement Chain,
this may impede the comprehension of the code and thus, hinder evolution.

Example: In the following listing, Listing 1.2, we show an example from Firefox
version 28, where C preprocessor is heavily used to annotate variable parts of
the method implementation.

Listing 1.2. Firefox: memory/mozjemalloc/jemalloc.c
Excerpt from bool malloc_init_hard(void)

/∗ More code ... ∗/
for (k = 0; k < nreps; k++) {

switch (opts[j]) {
case ’a’:

opt_abort = false;
break;

case ’A’:
opt_abort = true;
break;

case ’b’:
#ifdef MALLOC_BALANCE

opt_balance_threshold >>= 1;
#endif

break;
case ’B’:

#ifdef MALLOC_BALANCE
if (opt_balance_threshold == 0)

opt_balance_threshold = 1;
else if ((opt_balance_threshold << 1)

> opt_balance_threshold)
opt_balance_threshold <<= 1;

#endif
break;

Code Smells in Software Product Lines 5

#ifdef MALLOC_FILL
#ifndef MALLOC_PRODUCTION

case ’c’:
opt_poison = false;
break;

case ’C’:
opt_poison = true;
break;

#endif
#endif

case ’f’:
opt_dirty_max >>= 1;
break;

case ’F’:
if (opt_dirty_max == 0)

opt_dirty_max = 1;
else if ((opt_dirty_max << 1) != 0)

opt_dirty_max <<= 1;
break;

#ifdef MALLOC_FILL
#ifndef MALLOC_PRODUCTION

case ’j’:
opt_junk = false;
break;

case ’J’:
opt_junk = true;
break;

#endif
#endif
#ifndef MALLOC_STATIC_SIZES

case ’k’:
/∗
∗ Chunks always require at least one
∗ header page, so chunks can never be
∗ smaller than two pages.
∗/

if (opt_chunk_2pow > pagesize_2pow + 1)
opt_chunk_2pow−−;

break;
case ’K’:

if (opt_chunk_2pow + 1 <
(sizeof(size_t) << 3))

opt_chunk_2pow++;
break;

#endif
case ’n’:

opt_narenas_lshift−−;
break;

case ’N’:
opt_narenas_lshift++;

6 Wolfram Fenske and Sandro Schulze

break;
/∗ More code ... ∗/

Code Smells in Software Product Lines 7

4 Latently Unused Parameter

Derived from: Long Parameter List & Speculative Generality

Original description

Long parameter lists are hard to understand, because they become incon-
sistent and difficult to use, and because you are forever changing them
as you need more data. [. . .] Methods with unused parameters should be
subject to Remove Parameter.

Variability-Aware Description: Some parameters in a method signature are only
needed by certain features, but do not make sense for others. However, variable
method signatures introduce another set of problems (Rosenmüller et al., GPCE
2007). Hence, all potential parameters should be forward-declared upon intro-
duction of the method. However, if the feature that actually uses an optional
parameter is absent, the method has unused parameters, which hinders program
comprehension and may be likely to be a source of errors.

Applies to: Annotation-based and composition-based implementation techniques

Examples: Listing 1.3 shows an example for Latently Unused Parameter
in the Graph Product Line, which is implemented in FOP.

The next listing (Listing 1.4) shows an artificial annotation-based example,
which uses the C preprocessor.

8 Wolfram Fenske and Sandro Schulze

Listing 1.3. Latently Unused Parameter in the Graph Product Line (GPL): addAnEdge
Method from Class Graph in Features DirectedOnlyVertices and WeightedOnlyVertices

// Feature ’DirectedOnlyVertices’ (’weight’ is ignored)
public class Graph {

/∗ more source code ... ∗/

public void addAnEdge(Vertex start, Vertex end, int weight)
{
addEdge(start,end);

}

/∗ more source code ... ∗/
}

// Feature ’WeightedOnlyVertices’ (’weight’ is used)
public class Graph {

/∗ more source code ... ∗/

public void addAnEdge(Vertex start, Vertex end, int weight)
{
addEdge(start,end, weight);

}

public void addEdge(Vertex start, Vertex end, int weight)
{
addEdge(start,end);
start.addWeight(weight);
/∗ more source code ... ∗/

}
/∗ more source code ... ∗/

}

Listing 1.4. Latently Unused Parameter Using Annotations

class Stack {
void push(Object elem, Transaction txn) {

#ifdef SYNC
if (elem==null || txn==null) return;
Lock l = txn.lock(elem);

#else
if (elem==null) return;

#endif
elementData[size++] = elem;

#ifdef SYNC
l.unlock();

#endif
fireStackChanged();

}
}

Code Smells in Software Product Lines 9

5 Large Feature

Derived from: Large Class

Original description

When a class is trying to do too much, it often shows up as too many
instance variables. When a class has too many instance variables, dupli-
cated code cannot be far behind. [. . .] As with a class with too many
instance variables, a class with too much code is prime breeding ground
for duplicated code, chaos, and death.

Variability-Aware Description: Like classes in single systems, features in a prod-
uct line can also become too large. There may be different reasons such as mixing
up concerns in a feature or a bad design of the SPL. However, at the end, the cor-
responding Large Feature is trying to do too much and thus, the whole design
may be centered around this feature (similar to the God Class anti pattern).

Simple signs of this smell are large numbers of lines of code and the introduc-
tion of many new functions and / or classes (e.g., compared to all other features).
Even if a consumer of the Large Feature only needs a portion of the feature’s
functionality, unwanted parts cannot be excluded. This hinders customization
and may influence even non-functional properties such as footprint.

The remedy is simple: The Large Feature should be teased apart into sev-
eral features; feature model and configurations have to be updated accordingly.

Applies to: Annotation-based and composition-based implementation techniques

Example: Due to the nature of the smell Large Feature, a code example is
omitted.

10 Wolfram Fenske and Sandro Schulze

6 Switch Statements with Optional Cases

Derived from: Switch Statements

Original description

The problem with switch statements is essentially that of duplication.
Often you find the same switch statement scattered across a program in
different places. If you add a new clause to the switch, you have to find
all these switch statements and change them. The object-oriented notion
of polymorphism gives you an elegant way to deal with this problem.

Variability-Aware Description: A feature introduces additional case clauses in
a switch statement. If the feature is not present, the case clause is inactive.

Applies to: Annotation-based and composition-based implementation techniques

Variability-Aware Description (for composition-based implementation techniques):
With composition-based implementation techniques, such as FOP, introducing
additional case clauses into a switch statement is not directly possible. How-
ever, this is sometimes emulated by combining a switch or if statement with
calls to original or Super. Considering the example in Listing 1.5, these calls
somewhat obfuscate the actual switch-case statement and thus, may impede its
comprehension.

Variability-Aware Description (for annotation-based implementation techniques):
Using annotation-based techniques, the optional case clauses can simply be
guarded by a preprocessor directive. If the same switch occurs in multiple places,
each occurence has to have the same guarded case clauses.

Examples: Listing 1.5 shows an example for a switch statement with optional
case clauses in the FOP product line TankWar.

The next listing (Listing 1.6) shows an annotation-based example, taken from
the Mozilla NSS library, file lib/softoken/pkcs11.c, which is part of Firefox
version 28. It shows a switch statement with the optional case CKK_EC. In total,
this switch is repeated in four different functions in the module. The listing only
shows the first and second occurrence.

Code Smells in Software Product Lines 11

Listing 1.5. Example for a switch statement with optional cases in FOP
Adapted from the FeatureHouse-SPL TankWar:
init Method from Class Tool in (optional, sibling) Features Bomb, Freeze, Firepower

// Feature ’Bomb’
protected void init(TankManager manager, int xPos, int yPos,

int toolType) {
original(manager,xPos,yPos,toolType);
switch (toolType) {
case 374:
original(manager, xPos ∗ manager.grain2, yPos ∗ manager.

grain2, 255, 255, 0, manager.grain, manager.grain,
toolType);

break;
}

}

// Feature ’Freeze’
protected void init(TankManager manager, int xPos, int yPos,

int toolType) {
original(manager, xPos, yPos, toolType);
switch (toolType) {
case 371:
original(manager, xPos ∗ manager.grain2, yPos ∗ manager.

grain2, 100, 149, 237, manager.grain, manager.grain,
toolType);

break;
}

}

// Feature ’Firepower’
protected void init(TankManager manager, int xPos, int yPos,

int toolType) {
original(manager, xPos, yPos, toolType);
switch (toolType) {
case 372:
original(manager, xPos ∗ manager.grain2, yPos ∗ manager.

grain2, 0, 255, 0, manager.grain, manager.grain,
toolType);

break;
}

}

12 Wolfram Fenske and Sandro Schulze

Listing 1.6. Repeated Switch With Optional case Clause In Mozilla NSS Library,
security/nss/lib/softoken/pkcs11.c

// 1st occurrence
static CK_RV
pk11_handlePublicKeyObject(PK11Session ∗session, PK11Object ∗

object, CK_KEY_TYPE key_type)
{

/∗ More code ∗/
switch (key_type) {
/∗ More code ∗/
case CKK_DH:

/∗ More code ∗/
break;

#ifdef NSS_ENABLE_ECC
case CKK_EC:
if (!pk11_hasAttribute(object, CKA_EC_PARAMS)) {

return CKR_TEMPLATE_INCOMPLETE;
}
if (!pk11_hasAttribute(object, CKA_EC_POINT)) {

return CKR_TEMPLATE_INCOMPLETE;
}
pubKeyAttr = CKA_EC_POINT;
derive = CK_TRUE; /∗ for ECDH ∗/
verify = CK_TRUE; /∗ for ECDSA ∗/
encrypt = CK_FALSE;
recover = CK_FALSE;
wrap = CK_FALSE;
break;

#endif /∗ NSS_ENABLE_ECC ∗/
default:

/∗ More code ∗/
}

// 2nd occurrence
static CK_RV
pk11_handlePrivateKeyObject(PK11Session ∗session,PK11Object ∗

object,CK_KEY_TYPE key_type)
{

/∗ More code ∗/
switch (key_type) {

/∗ More code ∗/
case CKK_DH:

/∗ More code ∗/
break;

#ifdef NSS_ENABLE_ECC
case CKK_EC:
if (!pk11_hasAttribute(object, CKA_EC_PARAMS)) {

return CKR_TEMPLATE_INCOMPLETE;
}

Code Smells in Software Product Lines 13

if (!pk11_hasAttribute(object, CKA_VALUE)) {
return CKR_TEMPLATE_INCOMPLETE;

}
if (!pk11_hasAttribute(object, CKA_NETSCAPE_DB)) {

return CKR_TEMPLATE_INCOMPLETE;
}
encrypt = CK_FALSE;
recover = CK_FALSE;
wrap = CK_FALSE;
derive = CK_TRUE;
break;

#endif /∗ NSS_ENABLE_ECC ∗/
default:

/∗ More code ∗/
}

	Code Smells in Software Product Lines

