
Code Smells in Software Product Lines (FOSD
2014)
With this survey, we aim at gathering experiences and thoughts about Code Smells in Software Product Lines. It is meant as an
additional source of information, supplmentary to recent efforts we took for defining and detecting code smells in the presence of
variability.

We intend to provide an overview of the results by integrating it into a presentation at FOSD meeting 2014.

This survey will take approx. 20 minutes.

There are 51 questions in this survey

Participant's Code
First, you have to generate a unique code word to enable the reuse of results with future studies (while preserving anonymity).

This survey is anonymous and we cannot track back any data to a concrete
person. However, we may conduct follow-up studies where it may be likely that
we ask you again for participation. In this case, it is important to match the data
from this survey with such a follow-up study (e.g., an experiment).

To this end, it is important to generate a code word that is known only you. In
the following, we explain how you can generate this code word:

Second letter of your mother's first name
Third letter of your father's first name
Fourth letter of your star sign
Second letter of your first name
Third letter of your last name
*

Please write your answer here:

Personal Data
Initially, we need some information regarding your person.

How old are you?

*

Only integer value may be entered in this field.

Please write your answer here:

Gender? *

Please choose only one of the following:

 Female

 Male

Please specify your gender.

What is your current position? *

Please choose only one of the following:

 undergraduate student

 graduate student

 PhD student

 Post-doc

 professor (associate/assistance/full)

 Other

At what kind of affiliation your are currently employed? *

Please choose only one of the following:

 University

 Research Lab

 Company

 Other

Background & Experience
Next, we need information about your working background and experience regarding programming in general and SPLs in
particular.

How many years you are familiar with programming? *

Each answer must be at least 0
Only integer value may be entered in this field.

Please write your answer here:

For this question, we consider the time you learned and practiced a programming language regularly as the "first time of
programming"

How often do you program seriously? *

Please choose only one of the following:

 daily

 weekly

 monthly

 Other

 How experienced are you with the following programming paradigms? *

Please choose the appropriate response for each item:

 very
inexperienced inexperienced mediocre experienced

very
experienced

logical (Prolog)
functional (Haskell)
imperative (C)
object-oriented
(Java)

Have you ever worked on one or more larger programming projects in a company or at the
university or are you currently working on a larger programming project?
*

Please choose only one of the following:

 Yes

 No

 In which domain were/are those projects?

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '9 [BEproject]' (Have you ever worked on one or more larger programming projects in a
company or at the university or are you currently working on a larger programming project?)

Please write your answer here:

 How many lines of code did these projects
usually have?
*

Please choose only one of the following:

 < 900

 900 -- 40,000

 > 40,000

How do you estimate your programming experience compared to other people in
academia/industry in your position and how compared to programmers that
have 20 years of experience? *

Please choose the appropriate response for each item:

 clearly
worse worse identical better

clearly
better

Others in equal
position
Experienced
Programmers

How experienced you are with Software Product Lines (SPLs)? *

Please choose the appropriate response for each item:

 very
inexperienced inexperienced mediocre experienced

very
experienced

general
programming

Have you ever worked on programming an SPL? *

Please choose only one of the following:

 Yes

 No

In which context you worked on SPL programming? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '14 [BEsplProg]' (Have you ever worked on programming an SPL?)

Please choose only one of the following:

 academia

 industry

 both

 Other

How large were the SPL(s) typically? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '14 [BEsplProg]' (Have you ever worked on programming an SPL?)

Please choose only one of the following:

 < 900

 900 -- 40,000

 > 40,000

How experienced you are with the following variability implementation
techniques? *

Please choose the appropriate response for each item:

 very
inexperienced inexperienced mediocre experienced

very
experienced

Feature-Oriented
Programming
Aspect-Oriented
Programming
C/Antenna
preprocessor
Parameters

Which programming tasks you’ve been involved during SPL development? *

Please choose all that apply:

 Design/Implementation from scratch

 Extending an existing SPL (e.g., by a new feature)

 Modification (e.g., due to change request)

 Maintenance (e.g., refactoring, bug fixing)

Other:

Beside programming, are you/have you been involved in any of the following
tasks/activities (in the context SPLs)? *

Please choose all that apply:

 Analysis of SPLs

 Testing of SPLs

 Teaching SPLs

 Tool building for SPL development

Other:

Code Smells
Next, we would like to know about your expertise with code smells and anti patterns.

Did you ever hear about code smells? *

Please choose only one of the following:

 Yes

 No

Which of the following code smells do you know?

Please choose all that apply:

 Duplicated Code

 Long Method

 Large Class

 Long Parameter List

 Divergent Change

 Shotgun Surgery

 Feature Envy

Other:

Advice: with "knowing", we mean that you at least ruoghly know, which problem the respective smell describes.

Did you ever hear about anti patterns? *

Please choose only one of the following:

 Yes

 No

Which of the following anti pattern do you know? *

Please choose all that apply:

 God Class

 Spaghetti Code

 Lazy Class

 Data Class

Other:

Variability-Aware Code Smells

Finally, we want to know about your experiences and/or opinion about concrete variability-
code smells, that is, smells that are defined by taking variability into account.

To this end, we describe six variability-aware code smells in a .pdf file, attached with the email
that contains the link to this survey. In the following, we ask the same questions regarding
experiences and consequences for each of these code smells (hence, if you see a question
twice, it is not Groundhog day ;)).

Inter-Feature Code Clones

The following questions target at the Smell Inter-Feature Code Clone. You can
find a description in the attached .PDF file

Have you ever observed this code smell in the described or a similar form? *

Please choose only one of the following:

 Yes

 No

Make a comment on your choice here:

If you have any comments on your observations/experiences with this code smell, use the text area to let us know.

For which implementation techniques you observed this code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '26 [VCSclonesKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 Feature-Oriented Programming

 C preprocessor

 Antenna preprocessor

Other:

In which context you observed the described code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '26 [VCSclonesKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 student's implementation

 industrial code

 open source project

Other:

How do you estimate the severity of this code smell for the aspects, listed below?
*

Please choose the appropriate response for each item:

 very
problematic

rather
problematic don't know

rather
unproblematic unproblematic

program
comprehension
Maintainability
(e.g., error
detection/removal)
evolvability (e.g.,
add/change code)

Long Refinement Chain

The following questions target at the Smell Long Refinement Chain. This smell is
specific toFOP and you can find a description in the attached .PDF file.

Have you ever observed this code smell in the described or a similar form? *

Please choose only one of the following:

 Yes

 No

Make a comment on your choice here:

If you have any comments on your observations/experiences with this code smell, use the text area to let us know.

In which context you observed the described code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '31 [VCSrefinementKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 student's implementation

 industrial code

 open source project

Other:

How do you estimate the severity of this code smell for the aspects, listed below?
*

Please choose the appropriate response for each item:

 very
problematic

rather
problematic don't know

rather
unproblematic unproblematic

program
comprehension
Maintainability
(e.g., error
detection/removal)
evolvability (e.g.,
add/change code)

Annotation Bundle

The following questions target at the Smell Annotation Bundle. This smell is
specific topreprocessor-based variability (e.g., C/Antenna preprocessor) and you
can find a description in the attached .PDF file.

Have you ever observed this code smell in the described or a similar form? *

Please choose only one of the following:

 Yes

 No

Make a comment on your choice here:

If you have any comments on your observations/experiences with this code smell, use the text area to let us know.

In which context you observed the described code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '35 [VCSbundleKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 student's implementation

 industrial code

 open source project

Other:

How do you estimate the severity of this code smell for the aspects, listed below?
*

Please choose the appropriate response for each item:

 very
problematic

rather
problematic don't know

rather
unproblematic unproblematic

program
comprehension
Maintainability
(e.g., error
detection/removal)
evolvability (e.g.,
add/change code)

Latently Unused Parameter

The following questions target at the Smell Latently Unsused Parameter. You can
find a description in the attached .PDF file

Have you ever observed this code smell in the described or a similar form? *

Please choose only one of the following:

 Yes

 No

Make a comment on your choice here:

If you have any comments on your observations/experiences with this code smell, use the text area to let us know.

For which implementation techniques you observed this code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '39 [VCSparameterKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 Feature-Oriented Programming

 C preprocessor

 Antenna preprocessor

Other:

In which context you observed the described code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '39 [VCSparameterKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 student's implementation

 industrial code

 open source project

Other:

How do you estimate the severity of this code smell for the aspects, listed below?
*

Please choose the appropriate response for each item:

 very
problematic

rather
problematic don't know

rather
unproblematic unproblematic

program
comprehension
Maintainability
(e.g., error
detection/removal)
evolvability (e.g.,
add/change code)

Large Feature

The following questions target at the Smell Large Feature. You can find
a description in the attached .PDF file

Have you ever observed this code smell in the described or a similar form? *

Please choose only one of the following:

 Yes

 No

Make a comment on your choice here:

If you have any comments on your observations/experiences with this code smell, use the text area to let us know.

For which implementation techniques you observed this code smell? *

Please choose all that apply:

 Feature-Oriented Programming

 C preprocessor

 Antenna preprocessor

Other:

In which context you observed the described code smell? *

Please choose all that apply:

 student's implementation

 industrial code

 open source project

Other:

Switch Statements With Optional Cases

The following questions target at the Smell Switch Statement with Optional
Cases. You can find a description in the attached .PDF file

Have you ever observed this code smell in the described or a similar form? *

Please choose only one of the following:

 Yes

 No

Make a comment on your choice here:

If you have any comments on your observations/experiences with this code smell, use the text area to let us know.

For which implementation techniques you observed this code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '48 [VCSswitchKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 Feature-Oriented Programming

 C preprocessor

 Antenna preprocessor

Other:

In which context you observed the described code smell? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '48 [VCSswitchKnown]' (Have you ever observed this code smell in the described or a
similar form?)

Please choose all that apply:

 student's implementation

 industrial code

 open source project

Other:

How do you estimate the severity of this code smell for the aspects, listed below?
*

Please choose the appropriate response for each item:

 very
problematic

rather
problematic don't know

rather
unproblematic unproblematic

program
comprehension
Maintainability
(e.g., error
detection/removal)
evolvability (e.g.,
add/change code)

Thank you for your participation

Best,

Wolfram & Sandro

05-08-2014 – 08:49

Submit your survey.
Thank you for completing this survey.

