
University of Magdeburg

School of Computer Science

Master’s Thesis

Automating the Synchronization of
Software Variants

Author:

Tristan Pfofe

December 21, 2015

Advisors:

Prof. Gunter Saake

Dipl.-Inform. Wolfram Fenske

University of Magdeburg · Technical & Business Information Systems

Dr.-Ing. Thomas Thüm

TU Braunschweig · Software Engineering and Automotive Informatics

Pfofe, Tristan:
Automating the Synchronization of Software Variants
Master’s Thesis, University of Magdeburg, 2015.

Abstract

To overcome the increasing number of customer requirements, companies develop re-
lated software variants for individual customers. In industrial software development, it
is common practice to apply a practice called clone-and-own, where a software engineer
develops a new variant by copying and adapting existing variants. For this purpose,
software engineers often map each variant to a branch of a version control system. If the
number of variants raises, the number of branches and the effort to synchronize changes
between variants will increase, because an extension or bug fix of one variant has to be
transferred to other variants. Thus, clone-and-own has less up-front investments but
the maintenance effort rapidly grows with an increasing number of variants. However,
introducing a software product-line causes high initial costs and implementation effort
which make the development of few variants unprofitable. Furthermore, if variants are
developed with clone-and-own and a sufficient number of variants is reached, then the
transition to a product line will cause high migration effort.
To bridge the gap between the development of single systems and product lines, we
present VariantSync, a light-weight and language-agnostic concept to enhance variant
development with clone-and-own. VariantSync has the goal to make variant develop-
ment more efficient by automating the synchronization of variants. In addition, Variant-
Sync accumulates domain knowledge to support the transition to a product line. We
show that VariantSync is applicable by prototypically implementing this concept as an
Eclipse plug-in. Moreover, we use VariantSync to simulate variant development over a
distinct period of time and share main results.

Acknowledgements

I would like to thank Thomas Thüm for his comprehensive support and for many
interesting and productive discussions. He always took the time to discuss my questions
and gave me many advices that substantially improved my writing and the result of this
thesis. I also thank Wolfram Fenske who carefully read my drafts and gave me many
helpful comments that significantly improved this thesis. With Thomas and Wolfram,
I had two very dedicated advisors.
Finally, I thank my family and my girlfriend for their support, especially at the final
stage of this thesis.

Contents

List of Figures x

List of Tables xi

List of Code Listings xiii

1 Introduction 1

2 Background 7
2.1 Software Product-Line . 7

2.1.1 Domain Knowledge . 8
2.1.2 Feature Modeling . 12
2.1.3 Variability Implementation Techniques 13
2.1.4 Domain and Application Engineering 15

2.2 Clone-and-Own . 18
2.2.1 Traditional Clone-and-Own . 18
2.2.2 Usage of Version Control Systems 19
2.2.3 Variants in Branches . 20

2.3 Merge Techniques . 21
2.3.1 Two-Way vs. Three-Way Merging 21
2.3.2 Unstructured vs. Structured Merging 22

3 Synchronization of Software Variants 25
3.1 Variant Development . 25

3.1.1 Development of Few Variants 26
3.1.2 Development of Many Variants 26
3.1.3 Problem Statement . 28

3.2 Automating the Identification of Synchronization Targets 29
3.2.1 Making Domain Knowledge Explicit 29
3.2.2 Tagging Code to Features . 30

3.3 Automating the Synchronization . 34
3.3.1 Target-Focused Synchronization 36
3.3.2 Source-Focused Synchronization 38

3.4 Synchronizing in Batch Mode . 40
3.5 Summary . 40

viii Contents

4 Implementation: Variant Synchronization with VariantSync 41
4.1 Synchronization Platforms . 41

4.1.1 Version Control System . 42
4.1.2 Integrated Development Environment 43
4.1.3 Summary . 45

4.2 External Tools . 46
4.2.1 Eclipse IDE . 46
4.2.2 FeatureIDE . 47
4.2.3 Diff Utilities . 47

4.3 Change Management . 48
4.3.1 Change Detection . 49
4.3.2 Change History . 49

4.4 Code to Feature Mapping . 51
4.4.1 Feature Modeling . 51
4.4.2 Tagging Code to Features . 53

4.5 Applying Automated Synchronization 60
4.5.1 Computing Synchronization Targets 61
4.5.2 Synchronizing with Target-Focused Synchronization 61
4.5.3 Synchronizing with Source-Focused Synchronization 62
4.5.4 Merging Code Fragments into Variants 63
4.5.5 Synchronizing in Batch Mode 66
4.5.6 Increasing Code to Feature Mapping 67

4.6 Limitations and Optimizations . 67
4.7 Summary . 68

5 Evaluation 69
5.1 Research Questions . 69
5.2 Target System . 70
5.3 Simulating Variant Development . 71
5.4 Interpreting Results of Variant Development 77
5.5 Discussion . 82
5.6 Summary . 83

6 Related Work 87

7 Conclusion 91

8 Future Work 93

Bibliography 97

List of Figures

1.1 Comparison of Launching Strategies for Product-Line Development and
Single-System Development [MNJP02] 2

2.1 Feature Diagram of DesktopSearcher Product Line 12

2.2 Visualization of a Two-Way Feature Interaction 13

2.3 Overview of the Domain and Application Engineering Process [ABKS13] 17

2.4 Customized Product Clones [Kla14] . 18

2.5 Branch-per-Product Development [ABKS13] 21

2.6 Three-Way Comparison . 22

2.7 Code-Formatting Problem of Line-Based Merging 23

3.1 Effort of Variant Development . 28

3.2 Targets of Change Propagation . 29

3.3 Synchronizing Code Changes . 35

3.4 Example of a Target-Focused Synchronization 37

3.5 Example of a Source-Focused Synchronization 39

4.1 Visualization of Code to Feature Tagging in Eclipse 45

4.2 Change History . 50

4.3 Feature Model Editor with the Feature Model of DesktopSearcher . . . 52

4.4 Feature Configurations of Two Different Variants 53

4.5 Feature-Expression Dialog . 54

4.6 Color Dialog of Feature Expressions . 56

4.7 Activating a Feature-Expression Context 57

x List of Figures

4.8 Process to Enable a Feature-Expression Context 58

4.9 Process to Automatically Tag Code to a Feature Expression Context . 58

4.10 Data Model to Describe Feature Expression Contexts 59

4.11 Synchronizing with the Target-Focused Synchronization View 62

4.12 Synchronizing with the Source-Focused Synchronization View 63

4.13 Manual Merge Dialog . 65

4.14 Start Batch Synchronization in Source-Focused (left) and Target-Focused
Synchronization View (right) . 66

5.1 Simulated Variant Development with the History of an Existing Product
Line . 72

5.2 Generating Variants of an AHEAD Product-Line with FeatureIDE . . . 74

5.3 Differences between Revision 4 and 5 of DesktopSearcher 74

5.4 Differences of Variant 3 between Revision 4 and 5 75

5.5 Accessing Tagged Lines inside Feature-Expression Contexts 77

5.6 Automated vs. Manual Merge . 78

5.7 Tagged Code in Total (Rev. 4-9) . 80

5.8 Tagged Code in Total (Rev. 57-64) . 80

5.9 Tagged Code per Variant (Rev. 4-9) 80

5.10 Tagged Code per Variant (Rev. 57-64) 80

5.11 Automated Tagging vs. Manual Tagging 85

List of Tables

5.1 Feature Configurations of Generated Variants 73

5.2 Changes to Simulate Variant Development between Revision 4 to 9 and
57 to 64 . 76

5.3 Change Summary in the Batch Mode 79

5.4 Synchronization Targets for Change Propagation 79

List of Code Listings

2.1 DesktopSearcher with a Parser for HTML and TXT files 9

2.2 DesktopSearcher with a Parser for HTML and LATEX files 10

2.3 Class without Domain Knowledge . 11

2.4 Class with Domain Knowledge as an Annotation 11

2.5 Black-Box Framework Example . 15

2.6 Preprocessor Example . 16

4.1 Computing the Delta of Two Text Fragments 48

4.2 Merging Text Fragements . 48

4.3 Determining Changes of a File in VariantSync 51

4.4 SAT-Solver to Validate Feature Expressions against Feature Configurations 55

4.5 Feature-Expression Context in XML Representation 60

4.6 Detecting Merge Conflicts using Three-Way Comparison 64

4.7 Merging Two Files using Three-Way Comparison 64

xiv List of Code Listings

1. Introduction

Software is an essential part and a constant companion in everyone’s life. Due to the
exploding amount and variety of powerful hardware - from smart-phones, wearable com-
puters and tablets via notebooks and computer workstations through to high available
data centers - software is not only used in industrial and business areas, but also in
a wide field of applications of daily life and everyday’s activities. Software appears
in all imaginable fields, e.g., intelligent systems in vehicles, systems trading at stock
exchanges and systems to communicate all over the world. There is almost no modern
product that gets along without software [vdLSR07]. Today and, highly probably, in
the future, software conditions our existence [KD11]. Or, in words of C++ designer
Bjarne Stroustrup: ”Our civilization runs on software.” [Str12]
So, the need for software as well as the dependence on software is growing rapidly
[KD11]. More than 80% of germany’s exports depend on modern information technolo-
gies and software evolves to a dominating factor for products and services [BKPS04].
Software development has the challenging task to satisfy the society’s and industrial
needs for software. Software developers have to deliver code that is correct and efficient
[Str12] because software becomes the key asset for modern and competitive products
[vdLSR07]. Thereby, software development both addresses different software in differ-
ent fields of application and similar requirements in similar fields of application, such as
variants of flight control systems by the National Aeronautics and Space Administration
(NASA) [Käs10], variants of the Linux kernel [SLB+10] or variants of Hewlett-Packard
printer firmware [ABKS13]. To develop similar software products, also known as vari-
ants or program family, in an efficient way, the reuse of existing code is an essential task
to improve the software development process by developing faster, with lower costs and
with less errors. Depending on the number of required variants, there are two ways to
create and maintain program families. Using clone-and-own approaches is an easy solu-
tion to create a low number of variants, whereas for a high number of variants, software
systems targeting a similar requirement space are often developed as a product line.
Product lines are the solution to fulfill today’s requirements of software systems and

2 1. Introduction

0 1 2 3 4 5 6
0

100

200

300

400

500

600

Number of Products

C
u
m

u
la

ti
ve

C
os

ts
of

P
ro

d
u
ct

s
in

th
ou

sa
n
d
s

of
U

S
d
ol

la
rs

Lightweight
Heavyweight
SingleSystem

Figure 1.1: Comparison of Launching Strategies for Product-Line Development and
Single-System Development [MNJP02]

software intensive products regarding comprehensive functionality and flexibility with
low costs [BKPS04]. Besides reduced development and maintenance costs [vdLSR07],
a product line also promises tailor-made products to individual customers, improved
software quality by using standardized parts to construct different products, and time
to market benefits by assembling existing, corresponding parts to quickly produce re-
quired products [ABKS13]. The idea of a product line is managing a family of software
systems in a reuse-based way [AM14]. In more detail, software product-line engineer-
ing approaches support variant development sharing a common base of code artifacts
[PBvdL10]. Furthermore, software variants are characterized in terms of features. Dif-
ferent variants share several common features and differ among other features [TKES11].
Several product-line engineering approaches generate variants based on a selection of
features. Hence, product-line engineering approaches need a strategic and predictive
planning of possible and required variants.
Dependent on initial and future product costs, there are different ways to initiate a
product line. In comparison with the effort of single-system development, Figure 1.1
shows possible strategies to create a product line. Using heavyweight strategies, a prod-
uct line will build from scratch before variants can be generated. Thus, product line’s
initial product costs are significantly higher than initial development costs of a single
product in single-system development [MNJP02]. Besides, lightweight strategies are
transition strategies which analyze commonalities and differences of existing variants
to migrate them to a product line. These strategies demand less up-front investments,
but they take longer to reduce cumulative costs [MNJP02].
Due to the fact that the development of a product line requires a high effort, building a
product line is only efficient to generate and manage a sufficient number of variants. A

3

product line only pays off in the long term when multiple tailored variants are developed
[ABKS13]. So, to create a low number of variants, the single development of each vari-
ant is the more efficient way. For this purpose, clone-and-own is a common tool-driven
approach to develop variants. Applying clone-and-own means to copy code fragments
from existing variants and adapt them as needed for the development of a new variant.
Clone-and-own approaches require minimal initial costs to develop a new variant from
scratch. As further benefits, clone-and-own does not need preplanning and developed
variants are independent from each other [KG08]. Moreover, it can be realized with
well-known developer-tools, for example with the use of branching functionality of ver-
sion control systems. However, clone-and-own approaches are often considered harmful
to code quality [DRB+13, LLMZ06]. Code clones lead to code smell in software systems
and reduce software quality and maintenance [Fow00]. For the reason that variants are
independent, changes need to be tracked and propagated to appropriate variants which
is an error-prone process. For example, if an error appears in one copied code frag-
ment, the error has to be fixed multiple times in each pasted code fragment. So, mid-
and long-term maintenance effort increases heavily with each further variant. Despite
these facts and due to their simple and cheap usage, clone-and-own approaches are still
popular in many industrial organizations [DRB+13]. Nevertheless, in the short term,
clone-and-own is an efficient way to develop a fixed number of variants.

Motivation

Companies have three reasons to use clone-and-own instead of introducing a product
line. First, the number of required variants is not always known at the beginning of the
development. Introducing a product line would be a risky task that could not pay off if
the number of variants remains small. Second, most companies have no knowledge and
experiences in product-line development. So, introducing product-line methodology by
teaching developers would cause additional costs. Third, single-system development
has a comprehensive and well-engineered tool support, like version control systems and
integrated development environments. However, tool support for product-line develop-
ment is not as mature as tool support for single-system development.
Depending on the number of variants, single-system engineering provides appropriate
ways to develop variants. The development of few variants can be supported by several
approaches: (1) To apply clone-and-own development, version control systems can be
used to create several variants in branches by representing each variant as a branch.
From a common starting point, separate development paths diverge, so that there are
several latest configurations in the repository, called variants [Bre04]. Using this ap-
proach, error-proness for duplicated code is still given because changes on one branch
need manually synchronized with other branches. (2) Other approaches detect similar
code fragments in different variants and try to synchronize these fragments [Luo12].
(3) And yet other approaches combine version control systems and code clone detec-
tion approaches [Sch15]. All these approaches have in common that they can neither
effectively maintain several software variants if variants are added in the future (1) nor
support the migration to a product line (2, 3).

4 1. Introduction

As opposed to single-system engineering approaches, product lines efficiently maintain
variants if the number of variants is not fixed and variants are added in the future.
Unfortunately, product lines only pay off for a sufficient number of variants. The tran-
sition to a product line is a time-consuming task that causes high effort [PBvdL10].
If the number of variants is undetermined and only one variant is occasionally added,
then the transition is more expensive than only adding one further variant.
In summary, there is a gap between the development of a fixed and typically small
number of variants using single-system engineering approaches and a sufficient and
increasing number of variants using product-line engineering approaches.

Goal of this Thesis

The goal of this thesis is to enhance variant development with clone-and-own to develop
and maintain a small number of variants which could increase over time. In particular,
we want to make the development of few variants more efficient, faster, error-reduced
and, hence, with lower costs. A further goal is to reduce the effort for the migration to
a product line using a light-weight migration strategy.
For these purposes, we develop, present and discuss VariantSync, a strategy to support
variant development with clone-and-own by efficiently synchronizing variants and ac-
cumulating domain knowledge. VariantSync detects changes that occur during variant
development, tags these changes to features and automatically computes valid synchro-
nization targets. We synchronize changes between variants from two different points of
view. Target-focused synchronization focuses on change synchronization with a single
variant, where a variant is synchronized with all relevant changes that occur on other
variants. In contrast, source-focused synchronization propagates changes of one variant
into appropriate target variants. VariantSync extends a prior concept that was devel-
oped to support variant development by synchronizing fine-granular changes between
variants [Luo12].
In summary, our contribution is as follows. We provide:

• a light-weight and language-agnostic concept to enhance variant development with
clone-and-own and support the migration to a product line,

• a prototypical tool to reduce the gap between tool support for single-system en-
gineering and product-line engineering, and

• an evaluation on a simulated case study based on the development history of the
DesktopSearcher product line.

Structure of this Thesis

In Chapter 2, we introduce the background on product lines, variant development with
clone-and-own using version control systems, and merging.
In Chapter 3, we develop the VariantSync concept to automate the synchronization of
variants. We first distinguish the development of few and many variants by comparing

5

clone-and-own approaches and product-line approaches. Then, we present a concept
to automate the computation of synchronization targets and introduce an automated
variant synchronization from different points of view.
In Chapter 4, we show that VariantSync is applicable. We first discuss version con-
trol systems and integrated development environments as possible platforms to perform
the synchronization of variants. Then, we prototypical implement VariantSync as an
Eclipse plug-in.
In Chapter 5, we evaluate our implementation of VariantSync with a simulated case
study using the DesktopSearcher product-line. We cover the development of five vari-
ants over a distinct number of development steps and evaluate the degree of automated
synchronization as well as code to feature mapping.
In Chapter 6 and Chapter 7, we present related work, summarize this thesis and point
out our contributions. We further list suggestions for future work in Chapter 8.

6 1. Introduction

2. Background

The subject of this thesis is to bridge the gap between single-system engineering and
product-line engineering to develop and maintain a small number of variants which
could increase over time. In this chapter, we give a brief introduction into the main
topics and techniques of this thesis. For this purpose, we introduce main concepts of
product-lines in Section 2.1. In Section 2.2, we explain clone-and-own strategies to
support the development of product families, point out how to develop variants using
these strategies and present version control systems to apply clone-and-own. Finally,
we introduce code merging strategies and techniques in Section 2.3.

Running Example

To explain variant development and product-line technologies in scope of this thesis,
we introduce the DesktopSearcher product line as a running example for this chapter.
DesktopSearcher is a student project1 that was developed as part of the product-line
lecture at University of Magdeburg. This product line has 22 features and allows the
generation of 462 different variants [Luo12]. Among others, typical functionality pro-
vided by this product line is to search specific contents inside HTML, TXT or LATEX
files located in single or multiple directories. Furthermore, variants of DesktopSearcher
can either run on Windows or Linux operation systems and either provide a graphical
or command-line user interface.

2.1 Software Product-Line

Software product-line engineering describes the development of multiple similar soft-
ware systems in a domain sharing a common code base [PBvdL10]. These similar
systems share certain commonalities and represent a product family. A product line

1developed by Reimar Schröter, Sebastian Bress, Alexander Grebhahn, Sönke Holthusen

8 2. Background

generates similar software products which are tailored to the specific needs of differ-
ent customers and use cases. For this purpose, product lines introduce the concept of
mass customization to software products which is exemplary known from automobile
industry [ABKS13, Kru06]. As opposed to the development of a single one-size-fits-all
solution that covers all customer needs in a mass market, a product line provides tailor-
made solutions for different customers [Käs10]. The idea is to develop related software
products in a coordinated manner, so that commonalities between software products
are developed only once. The reuse of these software artifacts prevents the individual
development of each product for each customer from scratch. A software product that
is derived from a product line is called variant.
Traditional software engineering processes do not provide solutions to introduce the con-
cept of mass customization to software products. Instead of collecting requirements for
one target system and designing and implementing this system in consecutive phases or
agile cycles, software engineers have to analyze a variety of similar desired systems. For
this purpose, product-line engineering sets its focus on a well-defined and well-scoped
domain [ABKS13, Käs10].
A product line is defined as follows:

A software product-line is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of
core assets in a prescribed way [CN01].

In this context, a feature describes commonalities and differences between software
variants. A feature is defined as:

A prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems [KCH+90].

Features are used to characterize the domain of a product line. In Section 2.1.1, we ex-
plain the term domain. Moreover, features cannot be combined in an arbitrary fashion
to describe all characteristics of a software system. To describe valid combinations of
features, we introduce the concept of feature models in Section 2.1.2. In Section 2.1.3,
we explain different approaches to implement variability in a product line. Furthermore,
we describe a two-phase approach to handle variability, systematically reuse implemen-
tation artifacts and generate tailor-made software variants in Section 2.1.4.

2.1.1 Domain Knowledge

As opposed to single-system development, the development of multiple variants that
are similar, but not identical, requires a new look on software systems. Already in
1990, Prieto-Diaz pointed out that the systematic discovery and exploitation of com-
monalities across related software systems is a fundamental technical requirement for
achieving successful software reuse [PD90]. As one solution, domain analysis can be

2.1. Software Product-Line 9

1 class Parser {
2 [...]
3
4 public boolean indexHTMLFiles(String filename, IndexWriter writer) {
5 String content = HTML.getFileContents(filename);
6 [...]
7 HTMLParser parser = new HTMLParser(new StringReader(content));
8 [...]
9 }

10
11 public void indexTXTFiles(String filename, IndexWriter writer) {
12 String content = PlainTXT.getFileContents(filename);
13 [...]
14 TXTParser parser = new TXTParser(new StringReader(content));
15 [...]
16 }
17
18 [...]
19 }

Listing 2.1: DesktopSearcher with a Parser for HTML and TXT files

applied to meet this requirement [KCH+90]. Domain analysis describes requirements
and behavior of software inside a domain. Thereby, a domain is an area of knowledge
which includes concepts understood by practitioners in that area and which includes
knowledge to describe the building of software systems in that area [CE00, ABKS13].
Domain knowledge consists of a conceptual model that contains concepts and relations
between these concepts [SAA+00].
Reuse is defined as using previously acquired concepts or objects in a new situation
[PD89]. To reuse software during development process, objects of reusability (reusable
artifacts) support developer to reuse concepts or objects while creating new software.
In this context, reusable artifacts are any information which a developer needs to cre-
ate software [Fre83]. Domain knowledge comprises reusable artifacts [Cyb96] and is
essential to support software reuse.

Implicit Domain Knowledge

In software development, code fragments have an implicit meaning for the developer.
If a developer writes code fragments, each piece of code has an importance and belongs
to a distinct concern or requirement, so that the developer already relies on domain
knowledge when writing code fragments. While creating a new variant, the developer
has implicit domain knowledge and he can use this knowledge to prevent duplicated
effort on the same concern or requirement.
For example, one variant of DesktopSearcher implements a parser for two different file
types: HTML and TXT. Assume, a developer has to create a new variant implementing
parsers for HTML and LATEX. In Listing 2.1, class Parser in variant one contains code
to parse HTML and TXT files. The developer starts developing variant two. Thereby,

10 2. Background

1 class Parser {
2 [...]
3
4 public boolean indexHTMLFiles(String filename, IndexWriter writer) {
5 String content = HTML.getFileContents(filename);
6 [...]
7 HTMLParser parser = new HTMLParser(new StringReader(content));
8 [...]
9 }

10
11 public void indexLATEXFiles(String filename, IndexWriter writer) {
12 String content = LATEX.getFileContents(filename);
13 [...]
14 LATEXParser parser = new LATEXParser(new StringReader(content));
15 [...]
16 }
17
18 [...]
19 }

Listing 2.2: DesktopSearcher with a Parser for HTML and LATEX files

class Parser in variant two has to provide parsers for HTML and LATEX files. Instead
of implementing the whole class from scratch, the developer profits from his domain
knowledge and copies selected code from class Parser of variant one for the needs of
class Parser in variant two to implement a parser for HTML files. Hence, the developer
only has to implement a parser for LATEX files in Listing 2.2.
Variant development with clone-and-own is an unsystematic approach that principally
does not support reuse. Nevertheless, developers can use implicit domain knowledge to
systematically reuse software artifacts while creating a new variant.

Explicit Domain Knowledge

In contrast to developers, tools do not have implicit domain knowledge. Without fur-
ther help, they are not able to acquire domain knowledge the same way developers
acquire information. This is a problem for the development of variants with tool sup-
port, for instance to automate the synchronization of variants. Tools are able to check
syntax and semantic of code files, but they cannot retrieve domain knowledge without
additional information. Annotating or modularizing code belonging to a certain do-
main characteristic makes domain knowledge explicit in variant code [ABKS13]. For
example, tools do not have domain knowledge about the method indexHTMLFiles in
Listing 2.3. However, in Listing 2.4, the preprocessor annotation #if HTML explicitly
maps domain knowledge to a code fragment by indicating that indexHTMLFiles be-
longs to the domain characteristic HTML.

2.1. Software Product-Line 11

1 class Parser {
2 [...]
3
4 public boolean indexHTMLFiles(String filename, IndexWriter writer) {
5 String content = HTML.getFileContents(filename);
6 [...]
7 HTMLParser parser = new HTMLParser(new StringReader(content));
8 [...]
9 }

10
11 [...]
12 }

Listing 2.3: Class without Domain Knowledge

1 class Parser {
2 [...]
3
4 #if HTML
5 public boolean indexHTMLFiles(String filename, IndexWriter writer) {
6 String content = HTML.getFileContents(filename);
7 [...]
8 HTMLParser parser = new HTMLParser(new StringReader(content));
9 [...]

10 }
11 #endif
12
13 [...]
14 }

Listing 2.4: Class with Domain Knowledge as an Annotation

12 2. Background

2.1.2 Feature Modeling

Features represent domain abstractions [ABKS13] and distinguish products of a prod-
uct line. Different combinations of features lead to different products. However, not all
features can be arbitrarily combined [Thü15]. For example, a product line for the Linux
kernel provides support for x86 and x64 processor architectures, but it is not allowed
to choose both processor architecture options for the same product.
A feature model describes the features and their relationships and documents the vari-
ability of a domain [ABKS13]. It describes valid combinations of features of a product
line [KCH+90] and is represented as a hierarchically arranged set of features [Bat05b].
Furthermore, a feature model may also define dependencies between features with cross-
tree constraints. Moreover, feature diagrams are graphical representations of feature
models [KCH+90]. A feature diagram visualizes the features of a feature model in a tree
hierarchy. Each node of this tree is labeled with a feature name. The diagram includes
mutual relations between features and defines that each feature may have child fea-
tures which are mandatory, optional or belong to an or -group or an alternative-group.
[Thü15, ABKS13].

Figure 2.1: Feature Diagram of DesktopSearcher Product Line

Figure 2.1 shows an example feature diagram representing a feature model for the
DesktopSearcher product line. For example, a DesktopSearcher variant can parse dif-
ferent file types to search for specific text. The features HTML, TXT and LATEX im-
plement a parser for the different file types. Furthermore, feature User Interface deter-
mines whether the DesktopSearcher variant either has a graphical or command-line user
interface modeling features GUI and Commandline as an alternative-group. The graph-
ical user interface shows the Index for either Single Directories or Multi Directories
as well as either lists files as a Tree View or a Normal View. Moreover, feature
GUI has mandatory as well as optional features. For example, features History and
GUI Preferences are optional because it is possible to search files without indexing files,
saving search requests in a Query History or configuring the graphical user interface.

2.1. Software Product-Line 13

Finally, a DesktopSearcher variant can either run on Windows or Linux operating sys-
tems.
Besides, propositional formulas are a further representation of feature models. Each
feature is mapped to a boolean variable and the propositional formula is only true, if
the selection of features is valid [Thü15]. Feature diagrams can be automatically trans-
formed into propositional formulas [Bat05b].
Unfortunately, features often do not work isolated of other features. On the one hand,
they typically interact in a positive and intended way to exchange information, to reuse
functionality of other features, to accomplish a task in collaboration or to refine the
behavior of other features [ABKS13]. However, on the other hand, critical and inadver-
tent feature interactions can cause erroneous behavior and result in undesired system
states [ABKS13]. Assume, a feature works well in a given system. If this feature is com-
bined with other features, it could exhibit inadvertent behavior [ABKS13]. A feature
interaction between two or more features is defined as:

[..] an emergent behavior that cannot be easily deduced from the behaviors
associated with the individual features involved [ABKS13].

Hence, the feature-interaction problem defines that it is a difficult task to predict mutual
interactions when independently developed features are combined [ABKS13].
Finally, feature interactions can be described as a boolean combination of features
written as a logic expression, called feature expression [ALHM+11]. Figure 2.2 shows a
two-way interaction of features f1 and f2. The feature expression f1 ∧ f2 describes the
interaction between both features. This code has dependencies to both feature f1 and
feature f2.

Figure 2.2: Visualization of a Two-Way Feature Interaction

2.1.3 Variability Implementation Techniques

On the one side, feature models are one possibility to model variability on the domain
level. On the other side, variability is implemented in the code base on the application
level. Besides, variability is defined as:

14 2. Background

the ability of a software system or artifact to be efficiently extended, changed,
customized or configured for the use in a particular context [SvGB05].

Variability implementation mechanisms can be divided in composition-based and
annotation-based mechanisms. The difference between both mechanisms is how they
realize the separation of concerns to implement features [ABKS13].
Composition-based mechanisms provide a physically separation of concerns [ABKS13].
All code fragments and other kinds of artifacts, which belong to a feature, are separated
in a cohesive unit. To realize modularized implementations, programming language
concepts, like aspect-oriented programming or feature-oriented programming, provide
separation techniques for crosscutting concerns [ABKS13]. Composition-based mecha-
nisms usually allow coarse-grained extensions. They typically define points that can be
extended by features to introduce new classes, methods or fields, or to extend methods
by using method refinement or method overriding techniques [ABKS13].
For example, using frameworks is a possible implementation technique realizing
composition-based mechanisms. Frameworks are a set of abstract and concrete classes
which can be extended on variation points to adapt them for special needs [ABKS13].
In Listing 2.5 on the facing page, a DesktopSearcher can be applied on Windows as well
as Linux operation systems with different path separators in file paths. Each operation
system is represented by a feature. We implement variability in class ContentHandler
using the black-box framework approach. The ContentHandler retrieves functionality
to determine the path separator using a plug-in, where the ContentHandler does not
know the implementation of the plug-in. From the ContentHandler’s point of view, the
plug-in is a black box. Decoupled by the PathPlugin interface, the concrete implemen-
tation to return the path separator in Windows or Linux operation systems is realized
with a WindowsPlugin or a LinuxPlugin. Dependent on which plug-in implementation
is set in the constructor of the ContentHandler, the ContentHandler initializes the path
separator.
As opposed to composition-based mechanisms, annotation-based mechanisms virtually
separate concerns. All features are implemented in the same code base and annota-
tions map code fragments to features. One possibility to implement annotation-based
variability is to use a preprocessor. A preprocessor modifies code before compilation.
Depending on the feature configuration, it removes annotated code from the single code
base to create a custom product. Annotation-based mechanisms allow extensions at ar-
bitrary level of granularity [ABKS13].
To implement the path separator depending on the operating system by applying an
annotation-based mechanism, we use the antenna preprocessor. Antenna integrates
into code editors for Java and preprocessor directives are directly written as comments
in the editor [ABKS13]. The functionality to set system-specific path separators is
wrapped with conditional-compilation directives #if feature name and #endif. Be-
fore compilation starts, the antenna preprocessor comments out code fragments, whose
annotated features are not selected in the feature configuration. In the feature config-
uration of the DesktopSearcher variant, the Windows operating system is chosen. So,
antenna has commented out the if-branches that are annotated with feature Linux.

2.1. Software Product-Line 15

1 interface PathPlugin {
2 String getPathSeparator();
3 }
4
5 class WindowsPlugin implements PathPlugin {
6 public String getPathSeparator() {
7 return "\\";
8 }
9 }

10
11 class ContentHandler {
12 private PathPlugin plugin;
13 private String pathSeparator;
14
15 public ContentHandler(PathPlugin plugin) {
16 this.plugin = plugin;
17 }
18
19 public void initPathSeparator() {
20 pathSeparator = plugin.getPathSeparator();
21 }
22
23 [...]
24 }

Listing 2.5: Black-Box Framework Example

As we see in Listing 2.5 and Listing 2.6, frameworks only allow coarse-grained extensions
inserting methods, whereas preprocessors allow fine-granular extensions changing the
single line in method initPathSeparator of class ContentHandler. In the scope of this
thesis, we need to handle coarse-grained as well as fine granular changes. To support
change synchronization between variants, we need to detect changes on variants. For
example, if a developer adds or removes files or functions inside files, then he performs
coarse-grained changes. In contrast, developers often perform fine-granular changes by
adapting single lines inside a file during development.

2.1.4 Domain and Application Engineering

In Section 2.1.1 and Section 2.1.2, we introduced how to describe variability of software
systems on the domain level. Furthermore, we explained how to implement variability
on the application level in Section 2.1.3. One goal of this thesis is to support the transi-
tion of multiple variants to a product line. For this purpose, we explain how a product
line manages variability and provides tailored variants in this section.
A product line must fulfill requirements of multiple customers in a domain including
current customers and potential future customers [Käs10]. Moreover, a product line
needs to generate tailored variants. Feature-oriented software development fulfills these
requirements. Feature-oriented software development consists of a domain engineering
process and an application engineering process. The domain engineering process builds

16 2. Background

1 class ContentHandler {
2
3 private String pathSeparator;
4
5 public void initPathSeparator() {
6 // #if Windows
7 pathSeparator = "\\";
8 // #endif
9

10 // #if Linux
11 // @ pathSeparator = "/";
12 // #endif
13 }
14
15 public String getPathSeparator() {
16 return pathSeparator;
17 }
18
19 [...]
20 }

Listing 2.6: Preprocessor Example

the product-line architecture consisting of reusable core assets and features. First, de-
velopers analyze the domain and its requirements. Then, they describe possible variants
in features determining commonalities and differences between the variants. Finally, de-
velopers implement the product line with the aim that variants can be generated from
common and variable artifacts. The domain engineering process is performed in iter-
ations to first set up the product line and further extend the product line, while the
application engineering process is performed for every variant separately. Application
engineering focuses on the derivation of new and tailored variants to satisfy the needs
of particular customers. Furthermore, application engineering has the goal to reuse
artifacts from domain engineering whenever it is possible [ABKS13, Käs10].
Figure 2.3 on the next page gives an overview about the domain and application engi-
neering process as well as the problem and solution space. The problem space contains
the processes of domain and requirement analysis to describe requirements and behav-
ior of a software system with domain-specific abstractions, for example features. In
contrast, the solution space includes implementation-oriented abstractions, for exam-
ple code artifacts. Between features in the problem space and artifacts in the solution
space exists a mapping [TKES11]. Form and complexity of this mapping reaches from
simple mappings based on naming conventions to comprehensive machine-processable
rules encoded in generators [CE00, Käs10, ABKS13].
Regarding the problem and solution space, the development of feature-oriented product-
lines has four main tasks [ABKS13]:

Domain analysis determines the scope of the domain. It declares the covered prod-
ucts and relevant features. The analysis is documented in a feature model. In the

2.1. Software Product-Line 17

Figure 2.3: Overview of the Domain and Application Engineering Process [ABKS13]

scope of this thesis, we use a feature model as a variability model to describe the
domain of several variants.

Requirement analysis examines specific customer needs. The requirements are
mapped to feature selections. In case that any features exist to fulfill a cer-
tain requirement, the requirement will be analyzed in the domain analysis task.
In the scope of this thesis, we use features and feature expressions to describe the
requirements perspective of variants.

Domain implementation creates reusable artifacts that are mapped to features from
the domain analysis. In the scope of this thesis, we concentrate on code artifacts.

Product derivation combines reusable artifacts based on the results of the require-
ment analysis. In the scope of this thesis, product derivation is based on feature
configurations.

One goal of feature-oriented software development is full automation to derive a variant
based on a feature configuration. To enable the generation of variants, variability
implementation techniques can be used, as we introduced in Section 2.1.3. One target
of our work is to support the transition of variants to a product line, where each variant
was developed using concepts of single-system development. Therefore, we describe
the problem space for all variants and establish a mapping between features and code
artifacts of variants.

18 2. Background

2.2 Clone-and-Own

In simple words, clone-and-own means to copy a similar and successful variant and adapt
it as needed [DB07]. Hence, variant development can be applied using a clone-and-
own approach [DB07]. In this section, we discuss traditional clone-and-own, introduce
version control systems as a technical platform to support developers applying clone-
and-own strategies and present a possible process for developing variants in branches
of a version control system.

2.2.1 Traditional Clone-and-Own

Figure 2.4: Customized Product Clones [Kla14]

Clone-and-own approaches duplicate software artifacts, like small parts of source code,
components of a product or whole software systems [DB07]. The aim is to meet re-
quirements by copying existing software artifacts and modifying them [DRB+13]. A
common field of application is the development of product families [RKBC12]. In this
context, clone-and-own is a fast strategy to develop new variants. To implement a new
variant, software developers often fork an existing product and modify it to meet the
requirements of the new variant [EEM10]. Figure 2.4 shows this customization scenario.
First, the original product is cloned into two product clones. Then, both clones can
be modified, so that one product clone fulfills the requirements of customer A and the
other product clone fulfills the requirements of customer B. Both clones have separate
development lines that are independent of the original product. This process represents
the traditional clone-and-own strategy [Kla14].
Beside the simple application of cloning, code clones are known for their disadvantages
in the field of software engineering. Cloning leads to redundancies, lack of traceability,
lack of control and inconsistencies [RKBC12]. If not carefully managed, code clones
can unintentionally diverge in the long term [LWN07]. Common practical problems are
the difficult change propagation between clones, the difficult integration of cloned ar-
tifacts and, thus, the increased maintenance effort [DRB+13]. With a growing number

2.2. Clone-and-Own 19

of products, the maintenance effort to keep track and propagate changes between each
cloned product increases [RKBC12]. To summarize, using code cloning in the long term
is considered harmful to the code quality.
In contrast, advantages of traditional clone-and-own are low adaption costs, indepen-
dence from other developers and the easy and fast reuse of software artifacts to meet new
requirements [AJB+14, RKBC12]. Furthermore, the development of a cloned product
starts on existing and already tested code. Moreover, Dubinsky et al. [DRB+13] point
out three further reasons which explain why code cloning is still popular in industrial
practice:

Efficiency: Saving time and resources, cloning is a simple mechanism to start the
development from already implemented and verified artifacts. It is easy and fast
to perform and provides independence because developers can make any change
to their clones [KG08].

Short-Term Thinking: Organizations primarily focus on producing individual prod-
ucts and disregard any reuse management.

Lack of Governance: In most organizations, knowledge about reuse is not main-
tained. Information about cloned assets only exist in people’s mind.

2.2.2 Usage of Version Control Systems

Version control systems provide functionality that supports code cloning, like forking
an existing variant or managing variants in separate branches. As a main task, version
control systems assist developers to track the development of software systems. They
provide techniques and tools to manage large and complex software systems [Men02].
In software engineering, version control systems are best known for managing different
revisions of software systems. They facilitate collaborative development by tracking
changes in development artifacts, for instance source code. A revision gets an identifier
and a comment that explains the changes [ABKS13]. It describes ordered variations
over time. However, a variant describes variations that exist parallel [ABKS13]. A
version comprises revisions and variants [ABKS13].
Developers commonly use version control systems to track revisions, implement bug-
fixes in independent branches and merge branches back into the main development line.
As a typical workflow, software developers can derive revisions from another revision or
a base program, check out revisions from the repository, change them and check them
in again [ALB+11]. The workflow to implement and manage revisions is called variation
over time [ABKS13]. Using this development approach, a software system typically has
a linear development path, whereas each revision of the software is derived from the
previous revision. There are variants that exist in different revisions. In this context,
a release is a selected revision that has a release name and is deployed to customers
[ABKS13].
Beside the development on the main development path, version control systems provide
the concept of branching and the concept of forking. A branch is an independent

20 2. Background

development path that is separated from the main development line. Using the ability
to branch, software developers can create independent revisions because changes on one
branch do not affect files in other branches [ABKS13]. However, a fork is a local copy of
a repository. Working on a fork does not affect the original repository. After finishing
changes on a fork, a developer can send a pull request to get the code accepted.
Using the concept of parallel variant development in branches, version control systems
are able to support separate development paths which are diverged from a common
starting point [Bre04]. Instead of managing one latest revision of the software, there
are several latest revisions. These concurrent revisions represent different variants of
the product, where each variant has an own revision history. Thus, version control
systems are external tools that can be used to manage variability and that enable the
development of tailored and customer-specific products.

2.2.3 Variants in Branches

One possibility to manage several variants is to develop each variant in a separate
branch. This strategy is called branch-per-product development [ABKS13]. A main
development branch tracks code that is used by multiple variants. When a customer
requests individual product requirements, the developer uses the code of the main de-
velopment branch as a baseline and implements customer-specific features. For each
customer, a customer branch is created where the development of a specific variant
happens. If it is necessary, changes like bug fixes or other development results can be
merged from the main development branch into customer branches. The other direction
is also allowed, changes in customer branches can be merged into the main development
line [ABKS13].
Figure 2.5 shows the concept of branch-per-product development. The branch-per-
product strategy creates a branch for each required variant. If a new variant is required,
then an existing branch will be forked to create a new branch representing a new vari-
ant. This branch can be adapted as needed to implement the new variant. For example,
the main development line tracks the code base that is shared by variant 1 and variant
2. For each customer product, a new branch is created. This branch contains all code
from the main development line and it represents a new variant. Variant 1 needs a bug
fix which is implemented in a separate branch. The result of the bug fix is merged into
variant 1 and into the main development line. Then, variant 2 is created and it already
contains the bug fix of variant 1. At a later time in development, a software developer
changes variant 1 by extending a feature which is also implemented in variant 2. To
keep all development paths consistent, the changed code has to be merged into the main
development line and variant 2. The presented process in Figure 2.5 is a simplified ex-
ample. In practice, software development typically requires a high amount of branching
and merging operations [Ber90]. The more variants are developed in branches, the more
merge operations are necessary to propagate changes between branches.

2.3. Merge Techniques 21

Figure 2.5: Branch-per-Product Development [ABKS13]

2.3 Merge Techniques

Merging is one of the core tasks of optimistic version control systems. It transfers several
versions of a software artifact into a shared version [Men02]. To be more precise,
merging encompasses the process to integrate changes from one branch into another
branch. During the merge process, parallel modifications on different versions of a
software artifact cause conflicts which need to be resolved [Men02]. The degree of
merge automation depends on the merge technique [Men02].

2.3.1 Two-Way vs. Three-Way Merging

Merge techniques can be distinguished between two-way and three-way merge tech-
niques. A two-way merge technique merges two versions of a software artifact. It only
compares the differences between both versions. As a drawback, two-way merge tech-
niques cannot determine whether differences are caused by insertions, modifications or
removals in one of both versions or by parallel modifications in both versions [Men02].
As a result, the merge cannot be automated and causes a merge conflict. In contrast,
a three-way merge technique merges two versions in comparison with their common
ancestor. The common ancestor is that version from which both versions that need to
be merged originated [Men02]. Regarding the common ancestor, the three-way merge
is able to resolve merge conflicts that cannot be resolved by a two-way merge. For ex-
ample, Figure 2.6 shows that there is a difference between the left and right version of
JavaElement. Without further information, it is unclear whether the field name was
added in the left version or removed in the right version. Regarding the common ances-
tor, three-way comparison determines that field name already existed in the common
ancestor. Hence, it was removed in the right version. The merge can be automatized
by removing the field name in the left version, too.

22 2. Background

Figure 2.6: Three-Way Comparison

2.3.2 Unstructured vs. Structured Merging

A further distinction between merge techniques is based on the representation of soft-
ware artifacts. In the scope of this thesis, we need to merge changes between variants.
In this context, we want to achieve a high degree of merge automation. Beside a
two-way or three-way merging, the degree of merge automation depends on how the
merge technique regards software artifacts. On the one side, unstructured text-based
merge techniques regard code as a text file. On the other side, structured merge tech-
niques exploit language-specific knowledge. Most commercial merge tools are based on
unstructured merge techniques. These merge techniques commonly use a line-based
merge of text files that compare text files to detect whether common text lines have
been modified, inserted, deleted or moved [Men02]. Line-based merging is an efficient,
scalable and accurate merge technique which is able to merge about 90% of changed
files automatically without merge conflicts [Men02]. However, unstructured merge tech-
niques have too coarse granularity, so that two parallel modifications to the same line
cannot be handled [Men02]. For example, two revisions A and B change code in the
same file on the same line. Then, line-based merge techniques cannot merge the changes
and identify a merge conflict. As a further limitation in order to automate the merge,
unstructured merge techniques only compare text and do not analyze the syntax and
semantic of text fragments [Men02].
As opposed to unstructured merging, structured merging is the more powerful alter-
native that provides a higher degree of merge automation. As the name implies, it
analyzes the structure of files regarding the syntax and semantic. Compared to un-
structured merging, a syntactic merge is not affected by unimportant conflicts like code

2.3. Merge Techniques 23

Figure 2.7: Code-Formatting Problem of Line-Based Merging

comments that are modified by different developers or line breaks that are inserted to
make the code more readable [Men02]. For example, we assume that two similar files
contain the same syntactic code and only differ in line breaks and tabs. Then, method
getName() is added at the end of file one. Figure 2.7 shows how a line-based merge
technique failed to automatically merge the insertion of method getName() from left to
right version caused by a changed code formatting. Line breaks are removed at several
positions in the right version. As a consequence, a line-based merge reports a difference
between left and right version at each changed position. In the left version, getName()
was inserted at line 19. Due to the changed code formatting, getName() needs to be
inserted at line 15. A line-based merge is not able to resolve this conflict. In contrast,
a syntactic merge ignores conflicts caused by a changed code formatting and is able
to merge getName(). However, syntactical merging has several drawbacks. Syntactical
merges are slower than line-based merges. Moreover, they are NP-complete [ZJ94]. As
a further drawback, syntactical merging causes a merge conflict if the merged code has
a syntactic error.
Beside syntactic merging, semantic merging solves conflicts that cannot be detected by
syntactic merge techniques. While syntactic merge techniques implement tree-based
merge approaches like an abstract syntax tree, semantic merge techniques implement
graph-based merge approaches. These approaches are able to detect conflicts caused
by the relationship between function definition and function invocation. The graph
representation simplifies the detection of incompatibilities between a definition and its
invocation because it maintains an explicit link between them [Men02].

24 2. Background

3. Synchronization of Software
Variants

In this chapter, we discuss the development of variants and introduce a concept to sup-
port the conventional development of software variants by efficiently synchronizing a
small number of variants that could increase over time. In Section 3.1, we compare the
development of variants with a clone-and-own approach and product-line implementa-
tion techniques. Furthermore, we discuss their benefits and drawbacks and we illustrate
the problem to develop few variants when it is not clear how many variants are added
in the future. To support the development of variants, we introduce the VariantSync
concept consisting of a code to feature mapping concept (Section 3.2) and two strategies
to synchronize variants from different points of view (Section 3.3). Finally, we present
a batch synchronization in Section 3.4.
VariantSync is based on a prior concept to synchronize fine-granular changes between
variants [Luo12]. This concept detects changes on variants and provides a semi-auto-
mated computation of synchronization targets. We extend this concept with a concept
for an automated computation of synchronization targets, a concept for an automated
synchronization from different points of view and a concept to support the migration
to a product line.

3.1 Variant Development

The development of variants can be performed with different approaches depending
on the number of required variants. On the one hand, the development of few variants
typically requires a light-weight approach with minimal effort and a fast implementation
result. On the other hand, the development of many variants requires a heavy-weight
approach with strategic planning to minimize implementation and maintenance effort
[MNJP02].

26 3. Synchronization of Software Variants

3.1.1 Development of Few Variants

Developing few variants, each variant is developed separately. For this purpose, clone-
and-own is a common tool-driven approach to support the development. As we intro-
duced in Section 2.2.2, version control systems provide functionality to apply clone-
and-own using the branch-per-product strategy. Using version control systems has the
advantage that developers are familiar with the technology and its application. Today’s
single-system engineering typically uses version control systems to track development
of software systems. Thus, under the condition that the number of variants will not
increase, developers are able to use an established and well-known technique. Further-
more, branching can be used uniformly for code and non-code artifacts, changes can be
performed at arbitrary granularity and changes concerning crosscutting features do not
require any preplanning [ABKS13].
Nevertheless, there are some significant drawbacks. Diverging of variants quickly in-
creases because variants consist of disconnected and separated code clones [YGM06].
Single-system engineering approaches, like clone-and-own approaches, are appropriate
to develop a small number of variants. However, the number of variants typically in-
creases over time. If variants are added, software evolution becomes more complicated.
Thus, the more variants are added using clone-and-own, the more mid- and long-term
maintenance costs increase. For example, developers often create a new branch for each
variant, even if two variants only differ in small parts. Due to the fact that branches
are copies of the code base in the main development line, they provide no structured
reuse or modularity [ABKS13].
Moreover, variants are changed by applying bug fixes or implementing new require-
ments during development. Propagating these changes between variants cause several
synchronization issues. First, determining which changes need to be propagated to
other variants is a difficult task. As we introduced in Section 2.1.1, tools have no im-
plicit domain knowledge about the variants. Due to the fact that they only manage
source code without further knowledge about commonalities between the variants, it
is difficult to compute valid synchronization targets that need to be synchronized with
a given change. Second, merging the changes requires manual effort. For example,
version control systems provide merge support, but for the purpose of synchronizing
disconnected variants, merging tools are not as powerful as needed. The merge opera-
tion only copies changes from one branch into another branch. The developer manually
needs to extract the change, determine propagation targets, apply the merge using a
merge tool and resolve possible merge conflicts. In this context, branches easily di-
verge more than intended because it is easy to lose track of branches or to forget some
merges [ABKS13]. So, using tools from single-system engineering like version control
systems, change propagation is error-prone and causes high merge effort. To avoid these
drawbacks, the effort to coordinate variant development needs to be decreased.

3.1.2 Development of Many Variants

In contrast to clone-and-own approaches, the development of many variants requires
a preplanned and coordinated process to avoid unsustainable maintenance costs. For

3.1. Variant Development 27

this purpose, product-line engineering provides a coordinated variant development that
supports the systematic and planned reuse of software artifacts by explicitly managing
commonalities and variabilities in a domain.
As the benefits, product lines provide both product quality aspects like a higher re-
liability and process-oriented aspects like a reduction of development costs as well as
maintenance costs. Using modular product-line implementation techniques like com-
ponents or frameworks, common software artifacts are developed and tested once, so
that variants profit of reusing high-quality artifacts [PBvdL10]. Product lines fur-
ther reduce costs of variant development. Instead of developing variants from scratch,
reusable artifacts can be combined to speed up development. Moreover, product-line
engineering provides a coordinated variant development and variant management that
reduces maintenance costs [vdLSR07].
However, focusing on mid- and long-term results, product-line engineering requires cer-
tain up-front investments [vdLSR07]. The development needs certain time to enable
variant creation or generation and to benefit from the up-front investments. Product-
line engineering requires several development steps before a variant will be created.
Among others, the domain needs to be scoped and analyzed, customer requirements
need to be analyzed, variability needs to be modeled and reusable software artifacts
need to be implemented and mapped to variability modeling. All these steps require
investments without a direct reward in the form of variants. So, product-line engineer-
ing is only profitable from a certain number of variants onwards.
As a further drawback, tool support for product-line engineering is not as well-engineered
as tool support for single system engineering. A variety of tools can be used to build a
product line, but there is no single tool that fulfills the needs of all product lines. How-
ever, many tools supporting single-system engineering are also applicable in a product-
line context. The problem is that product-line engineering has particular needs and
risks, which complicate tool support. First, as opposed to single-system engineering,
software artifacts are long lived and more complex because they can be reused across
a number of variants. In addition, product-line tools must support variability among
multiple variants. For example, relationships are established between artifacts and vari-
ants, artifacts and the product-line architecture and between two and more artifacts
[BCD+00]. So, product-line tools have the challenging task to support concurrently
creation, maintenance and usage of product-line artifacts in a coordinated way. Sec-
ond, tool support for product-line engineering requires not only the usage of a set of
tools, it also requires the interoperability of these tools to automate the production of
variants. For example, product-line engineering covers many development phases, e.g.,
activities of domain and application engineering, and tools should be able to work with
output from other tools as well as provide input for other tools [BCD+00]. A lack of
interoperability causes inconsistencies and gaps between product-line activities. Third,
product-line tools need to represent variability to be flexible for changing customer
needs. For example, a product line should be able to generate custom-tailored variants
and product-line tools need to provide mechanisms to ensure this variant generation
based on reusable artifacts. The lack of tool support for variability leads to difficulties
representing variability in the architecture of a product line [BCD+00].

28 3. Synchronization of Software Variants

3.1.3 Problem Statement

Figure 3.1: Effort of Variant Development

As we described in Section 3.1.2, product lines provide several advantages developing a
sufficient and increasing number of variants, but they require certain initial costs and
risks [vdLSR07]. Regarding up-front investments and the lack of tool-support, using a
product-line approach to develop few variants is not preferable. Besides, single-system
engineering approaches are designed to develop a fixed number of variants, but they
cause problems when variants are added in the future. Figure 3.1 compares the costs
of product-line engineering and single-system engineering. A product line is prefer-
able if the product line is able to generate a sufficient number of products. In many
publications [JKB08, vdLSR07, Kru06, MNJP02, WL99], this break-even point is ap-
proximately located after three variants. The break-even point cannot precisely located
because it depends on the reuse potential between products, the chosen product-line
transition strategy as well as several organization and market influences, such as cus-
tomer base, expertise or kinds of products [PBvdL10].
As opposed to product lines, single-system engineering approaches are designed to de-
velop a fixed number of variants. If variants are added in future, then effort and costs
to both maintain existing variants and develop new variants will rise, as it is shown
in Figure 3.1. If a sufficient number of variants is reached, the cumulative costs of a
product-line engineering approach is cheaper than single-system engineering approaches
[AM14, MNJP02] and a product line is more appropriate to manage variants in a cost-
effective manner. To this end, variants need to be transformed to a product line using
an extractive approach where variants are used as a baseline for bootstrapping a new
product line [VBP12]. Before a product line can be initiated, the commonalities and
differences of variants need to be analyzed. The transition of already existing vari-
ants to a product line is a difficult and time-consuming task which requires high initial
investments and causes high effort [PBvdL10, vdLSR07, VBP12]. Furthermore, the
transition is not profitable if the number of variants is not fixed and if new variants are
only added infrequently. For example, a company develops a product. Three months
after the release, the customer requires a similar product and the company develops a

3.2. Automating the Identification of Synchronization Targets 29

further variant of this product. Six months later, another customer requires the same
product with additional features and the company develops a third variant. Following
this process, the company has n variants and always adds one new variant from time
to time, so that the company has to maintain n + 1 variants. While the transition to
a product line causes much more effort than only adding a further variant in the short
term, effort and costs to maintain existing and develop new variants will raise with each
further variant in the long term. The problem is that it is not clear if a further variant
will be added in future. So, there is no optimal point in time to perform the transition
to a product line. Thus, a company is always afraid to perform the transition, which is
admittedly expensive in the short term but reasonable in the long-term.
Summarizing, there is a gap between single-system engineering and product-line engi-
neering to efficiently develop a small number of similar variants which could increase
over time. To reduce the gap, we provide a light-weight and language-agnostic concept,
called VariantSync. On the one hand, VariantSync supports the maintenance of a small
number of variants which could increase over time by automating the synchronization
of variants. On the other hand, VariantSync supports the light-weight transition to a
product line by accumulating domain knowledge.

3.2 Automating the Identification of Synchroniza-

tion Targets

The efficient and highly automated synchronization of variants is a challenging task.
The basic idea of synchronization is described as follows: First, changes that occur
during development of a variant need to be detected and collected. Second, changes
need to be synchronized with appropriate variants. We use domain knowledge to de-
tect appropriate variants that need to be synchronized with a change that occurred in
another variant.

3.2.1 Making Domain Knowledge Explicit

Figure 3.2: Targets of Change Propagation

In Section 2.1.1, we introduced domain knowledge to support software reuse and intro-
duced the meaning of domain knowledge for developers and tools. A developer acquires

30 3. Synchronization of Software Variants

implicit domain knowledge while implementing a variant, because each written code
fragment has a meaning and belongs to a concern or requirement. As opposed to this,
tools are not able to acquire domain knowledge the same way developers do. Our
VariantSync strategy has the aim to make the synchronization of variants more effi-
cient by propagating changes into appropriate variants. Figure 3.2 exemplarily shows
change propagation into appropriate variants. Variant A and variant B implement re-
quirement R1, whereas variant C implements requirement R2. Inside variant A, code is
changed that implements requirement R1. Propagating this change, variant B is a valid
propagation target because variant B also contains code that implements requirement
R1. Due to the fact that variant C does not implement requirement R1, variant C is
not affected by this change and does not need to be synchronized with this change.
Hence, using domain knowledge to represent variability enables us to compute valid
propagation targets of changes that occurred inside a variant.
To compute valid propagation targets, we simply need a list of concerns of each variant.
This list describes the variability of a variant and enables tools to compute valid propa-
gation targets. In Figure 3.2, we used requirement descriptions to express variability in
a domain. However, requirement descriptions are simplified and coarse-grained variabil-
ity descriptions. To profit of existing and comprehensive variability modeling concepts,
we adapt variability models of product lines. In contrast to requirement descriptions,
variability models provide comprehensive descriptions of the variability in a domain.
Examples of variability models are orthogonal variability models [PBvdL10] or decision
models [SRG11]. For the VariantSync strategy, we adopt feature modeling because it
is currently the most popular form of variability models [ABKS13]. Thus, we introduce
a feature model that describes variability for all variants. Beside its advantages, such
as documenting features and their relationships [ABKS13], a feature model needs to be
manually created by a developer. Based on the feature model, each variant is charac-
terized by a set of features. To achieve this, feature models provide the ability to derive
feature configurations. A feature configuration is a valid selection of features from the
feature model. Each variant is characterized by a feature configuration. That means a
variant implements all features specified by the feature configuration. However, at this
point does not exist a mapping between code fragments and features.
To summarize, the challenge is to map code fragments to features. For this purpose,
we present and discuss concepts of feature tagging.

3.2.2 Tagging Code to Features

To bridge the gap between code fragments on implementation level and features on
domain level, product-line approaches provide a wide range of methods that use frame-
works, components, inheritance, aspects, generative programming or preprocessor di-
rectives [ABKS13]. However, on the one hand, these methods require a high effort to
transform the existing code of the variants into the chosen coding technique. On the
other hand, these techniques differ in granularity.
Composition-based techniques usually extend code with coarse granularity. Some of
these techniques provide extension points that can be extended by features, like plug-in

3.2. Automating the Identification of Synchronization Targets 31

architectures in frameworks and components. Other composition-based techniques like
aspect-oriented programming are able to virtually extend methods. Using composition-
based techniques, it is only possible to add classes, methods, or fields and to extend
whole methods with wrappers, like method refinements or method overriding [ALB+07].
This is a significant drawback for already existing variants because these variants were
not designed for a composition-based development. Moreover, a developer typically not
only adds whole classes or methods but also adds new statements into existing methods,
changes method signatures, or deletes lines of code during implementation of a variant
[Käs10].
Beside composition-based techniques, annotation-based techniques are able to mark
code fragments at arbitrary levels of granularity. On the granularity of single code
lines, they set annotations at that code line that should be extended. For example, pre-
processor directives can wrap a code line to indicate the feature this line is mapped to.
Furthermore, annotations can be nested to express feature dependencies. Nevertheless,
the comprehensive use and nesting of annotations easily pollutes the code and leads
to obfuscated code. In addition, annotation-based product-line techniques require a
complete code to feature mapping because non-mapped code belongs to all features
[Käs10].
In summary, composition-based product-line techniques are not appropriate to map
code fragments to features for a small number of variants that were not designed for
feature support, because these techniques change the code inside variants, which causes
high customization effort. Annotation-based techniques admittedly provide a code map-
ping on an appropriate granularity, but code obfuscation and high effort to annotate
the whole code of all variants are still given. To overcome the high mapping effort, we
introduce a lightweight tagging concept. Thus, our concept has to fulfill five require-
ments:

1. Apply tagging on a fine granularity level to even map single lines of code to
features.

2. Avoid code pollutions.

3. Mapping should not heavily interfere with existing coding paradigms to keep the
mapping effort low.

4. Handle the feature interaction problem as well as code that belongs to multiple
features.

5. Obtain code to feature mapping of changed code fragments while synchronizing
changes into propagation targets.

To meet the first and second requirement, we use concepts of annotation-based tech-
niques and adapt them to our needs. We obtain a fine granularity by marking code
fragments with information about its feature on the code level. Instead of using anno-
tations, we store the tagged information as metadata. So, we do not adapt code and

32 3. Synchronization of Software Variants

fulfill the second requirement by avoiding code obfuscation.
To meet the third requirement, we partly map variant code to features. In the long
term, automated synchronization will synchronize code that was changed inside one
variant to other variants. Therefore, we only map code that was changed during the
development process. As an advantage, the amount of mapped code grows with ongoing
development process.
To meet the fourth requirement, we need to handle code that belongs to multiple
features as well as the feature-interaction problem. For this purpose, we map code frag-
ments to feature expressions instead of features. The feature expression describes the
feature interaction of multiple code to feature mappings. Evaluating the feature expres-
sion against feature configurations of variants identifies valid propagation targets. For
example, code fragment A belongs to feature f1 and feature f2. In this case, we create
a new feature expression f1 ∧ f2 and map code fragment A to this expression. Now,
all variants that implement feature f1 and f2 and include feature expression f1 ∧ f2
in their feature configuration are valid propagation targets. To automatically reason
about whether a feature expression is included by a feature configuration, the feature
expression and feature configuration are represented as propositional formulas. This
has the advantage that automated reasoning techniques are able to determine if the
propositional formula of the feature expression satisfies the propositional formula of the
feature configuration. For example, feature expression f1 ∧ f2 evaluates to true against
feature configuration f1 ∧ f2 ∧ ¬f3 ∧ f4 .
Lastly, to meet the fifth requirement, the presented tagging concept can be used as an
incremental feature location technique because we aggregate mapping knowledge that
describes which code fragment is referenced to which feature(s). This knowledge en-
ables us to establish a feature to code traceability which is an essential requirement to
migrate variants to a product line. Changed code is mapped to a feature. While syn-
chronizing changed code into a propagation target, we recover existing code to feature
mappings and the propagation target integrates mapped code. Thus, the more code is
mapped the stronger the migration to a product line is supported.
In the following, we propose and discuss two concrete tagging strategies that realize
this tagging concept.

Manual Tagging

Manual tagging has the aim that the developer keeps control over the tagging. Before
and after working on code, the developer has the ability to manually tag code fragments
to feature expressions. He decides whether to tag code after each implementation step
or to tag code at the end of a coding session. Therefore, the process of tagging code
fragments is decoupled from the process of changing code fragments.
As an advantage, the developer has complete control about the tagging. After im-
plementing a feature, he can evaluate his work by tagging changed code to feature
expressions. If the developer tagged a code fragment to the wrong feature expression,
he can easily correct the tagging. Later in synchronization, only code will be synchro-
nized that was tagged by the developer. As a further advantage, the granularity of

3.2. Automating the Identification of Synchronization Targets 33

tagging is very fine. The developer is able to tag each command or, in case that it is
necessary, each single word inside a line of code to a different feature expression.
Nevertheless, the developer has to perform a lot of manual work to mark each code
fragment that belongs to a feature expression. As a drawback, there is no mechanism
that supports the developer by automating the tagging. If many positions inside a
code file change, the developer has high effort to tag each change. Moreover, the error
rate of tagging depends on the fact how precise the developer works. For example, the
developer could forget to tag certain code fragments.

Tagging with Feature-Expression Contexts

Tagging with feature-expression contexts has the aim to automate tagging and to keep
manual tagging effort low. For this purpose, we automate code tagging using a context
in which the developer can work on the code. Before the developer starts working, he
chooses the feature expression on which he wants to work on and activates a working
context. In the following, all code changes during implementation are mapped to the
activated feature expression. If the developer wants to work on code that belongs to
another feature expression, he only needs to change the active context. For example, the
developer implements a class containing a function of feature f1 and a function of feature
f2. First, the developer activates the context of feature f1. Then, he implements the
first function. In the following, the developer stops the context of feature f1, activates
the context of feature f2 and implements the next function. Afterwards, he stops the
context of feature f2. As a result, the first function is automatically tagged to feature
f1, whereas the second function is tagged to feature f2.
Using a context has the advantage that the developer has less effort to tag code changes
to feature expressions. Except activating the desired context, his development workflow
is not different from clone-and-own.
However, automated tagging has the drawback that once performed, tagging cannot
be changed afterwards. For example, the developer forgets to switch the context and
works first on code that belongs to feature expression A and then on code that belongs
to feature expression B. Now, code changes that belong to feature expression B are
mapped to feature expression A. As opposed to manual tagging, the developer has no
possibility to correct the mapping. He needs to reactivate context A and manually undo
each implementation step that was mistakenly mapped to feature expression A. As a
further drawback, the developer has effort to frequently change the active context if
the developer works on small code fragments belonging to different feature expressions.
For example, the developer works on the class Calculator. This class contains methods
to add, subtract, multiply and divide integer values. Each method belongs to a different
feature (Addition, Subtraction, Multiplication, Division). The developer activates the
context for feature Addition and starts working on method add. Then, he needs to
change one line of code in method subtract. Therefore, he needs to switch the context.
To continue with method multiply, the developer needs to switch the context again.
Finally, to implement method division, the developer again switches the context. This
process is complicated and could lead to a wrong code to feature tagging if the developer
once forgets to switch contexts.

34 3. Synchronization of Software Variants

Combining Manual Tagging and Tagging with Feature-Expression Contexts

In the previous sections, we discussed advantages and disadvantages of manual tagging
and tagging with feature-expression contexts which both traces features to code frag-
ments. Applying manual tagging, the developer has complete control about the code
that he wants to tag. For example, manual tagging enables developers to tag single
words to different feature expressions. However, a developer has high effort to manu-
ally tag each code fragment that belongs to a feature expression. To minimize tagging
effort, tagging with feature-expression contexts automates tagging but once performed
tagging cannot simply changed, for example to correct an erroneous tagging. If we
combine both tagging strategies, we join their advantages and minimize their disad-
vantages. Tagging with feature-expression contexts automates the process of code to
feature tagging and manual tagging provides manual control about the tagging. For
example, if an error occurs during tagging with feature-expression contexts, then the
developer can simply correct the tagging manually.

3.3 Automating the Synchronization

Using manual tagging or tagging with feature-expression contexts, we make domain
knowledge explicit by tagging changed code fragments to feature expressions. Now,
we need to synchronize code that is changed inside a variant with compatible target
variants. Nevertheless, synchronization has several challenges:

1. Compute valid synchronization targets.

2. Decrease synchronization effort.

3. Expand the code to feature mapping.

4. Decouple implementation from synchronization.

As the first synchronization challenge, we compute synchronization targets for auto-
matic and manual synchronization. We gave a short overview how to support the
computation of valid synchronization targets in Section 3.2. A variant is a compatible
synchronization target if the variant implements the same feature expression that the
changed code fragment is tagged to. Now, we take a deeper look at possible synchroniza-
tion targets and classify variants concerning their suitability to perform an automated
synchronization. As we show in Figure 3.3, there are three different kinds of synchro-
nization targets.
The first class are variants without merge conflicts. These variants are synchroniza-
tion targets that do not cause merge conflicts. It is undefined whether these variants
implement the changed feature expression. A change can be lexically merged to these
variants but a synchronization could be wrong from a requirements perspective. Vari-
ants without merge conflicts that do not implement the changed feature expression are
invalid synchronization targets and need to be ignored. For example, the change in

3.3. Automating the Synchronization 35

Figure 3.3: Synchronizing Code Changes

feature expression F2 could be lexically merged into variant D, but a merge is not
necessary because variant D does not implement feature expression F2.
The second class defines variants to synchronize. These variants implement the changed
feature expression, but a merge could cause merge conflicts. For example, variant A
is a variant to synchronize and implements feature expression F2. We assume that
feature expression F3 affects the implementation of feature expression F2. So, the code
change of feature expression F2 would cause a merge conflict if it is synchronized with
variant A. Variants to synchronize causing a merge conflict can only be synchronized
by applying a manual merge.
Finally, the third class is the intersection of variants to synchronize and variants without
merge conflicts. These variants implement the changed feature and allow an automated
synchronization without merge conflicts. For example, the change in feature expression
F2 can be lexically merged into variant B and the synchronization is correct from a
requirements perspective, because variant B implements feature expression F2.
Without VariantSync, only variants without merge conflicts can be automatically iden-
tified. For example, version control systems are able to check whether changes can
be merged into branches. Variants to synchronize can only manually identified if the
developer has implicit domain knowledge about the variants. To summarize, Variant-
Sync automates the identification of variants to synchronize as well as variants without
merge conflicts.
As the second synchronization challenge, we decrease the synchronization effort by

36 3. Synchronization of Software Variants

achieving a high degree of automated synchronization. A frequent synchronization using
VariantSync could increase the merge frequency which leads to a reduced number of
merge conflicts. Especially merge conflicts occur if many code changes are synchronized
in a wrong order, e.g., when they are not synchronized in the order that they occurred.
To be more precise, certain merge conflicts occur if two parallel changes can only be
merged in a certain order [Men02]. Merging these changes in an inverse order causes in-
consistencies [Men02]. In the following, we name this kind of conflicts ordering conflicts.
For example, variant A is changed. This change needs to be synchronized into variant
B. The developer does not synchronize the change and continues his work on variant
A. Then, he changes again code in variant A and this code depends on the first change.
Now, there are two changes that need to be synchronized into variant B. To avoid an
ordering conflict, the first change in variant A needs to be synchronized into variant
B first, then the second change in variant A needs to be synchronized into variant B.
Synchronizing changes, VariantSync keeps track of the order in which changes occur.
Furthermore, synchronization effort decreases with falling number of merge conflicts be-
cause these conflicts require a manual conflict resolution. On the one hand, the success
of the merge depends on the kind of synchronization targets. As we show in Figure 3.3,
the degree of automation depends on the amount of variants to synchronize that cause
a merge conflict. On the other hand, the success of the merge depends on the merge
techniques (Two-Way/Three-Way Merge, Unstructured/Structured Merge). Choosing
merge techniques is a design decision on the implementation level. VariantSync can be
applied independently of distinct merge techniques.
As the third synchronization challenge, we expand the code to feature mapping by ap-
plying change propagation, as we introduced in Section 3.2.2. If a change is merged into
a propagation target, then the merged code is tagged to the same feature expression
that the change is tagged to. Thus, code is automatically tagged to feature expressions
and the degree of tagged code in synchronized variants automatically increases.
As the fourth synchronization challenge, we decouple implementation from synchro-
nization. To be more precise, we separate the process of changing code fragments from
change propagation to compatible variants. In this way, it is possible that one devel-
oper works on a variant and another developer, who is responsible for the target variant,
propagates the changes. A decoupled change propagation allows to synchronize vari-
ants from different points of view. Hence, we present two synchronization strategies in
Section 3.3.1 and Section 3.3.2.

3.3.1 Target-Focused Synchronization

The target-focused synchronization focuses on synchronizing changes to a single vari-
ant. This variant receives code fragments that were changed in other variants. We
regard features of a single variant and compute whether changes occurred in compati-
ble feature expressions that are implemented in different variants. The workflow using
target-focused synchronization is as follows: A developer chooses a variant, possibly
when initiating a new release. Then, VariantSync requests changes. These changes oc-
curred in other variants and they are tagged to the same feature expression(s) that the

3.3. Automating the Synchronization 37

Figure 3.4: Example of a Target-Focused Synchronization

selected variant implements. Changes are ordered by creation date. Finally, changes
are merged into the chosen variant. For example, in Figure 3.4, variant C is the vari-
ant that needs to be synchronized with changes that occurred in variants A, B and D.
For this reason, changes in compatible feature expressions of variants A, B and D are
detected. Changes on feature expression F2 in variant A and feature expression F3 in
variant D are compatible with variant C. Consequently, these changes are merged into
variant C.
The target-focused synchronization has the advantage that the process to synchronize
a variant is similar to the development of branches in version control systems. If one
branch is merged into another branch, the version control system computes differences
between both branches and merges the changes of one branch into another branch.
Thus, developers are mostly familiar with the workflow to synchronize variants on a
target-focused point of view. As a difference, the target-focused synchronization strat-
egy provides changes aggregated to feature expressions of different variants.
Moreover, variants can be synchronized by experts on the respective variant. One de-
veloper can work on a variant and another developer, who is responsible for the target
variant and potentially an expert on the target variant, can propagate the changes.
Furthermore, the target-focused synchronization supports developers to add variants in
the future. Only specifying a feature configuration, a new variant can be synchronized
with changes the same way existing variants are synchronized. With each synchroniza-

38 3. Synchronization of Software Variants

tion, the new variant receives tagged code and the degree of code to feature mapping of
the new variant increases. Moreover, the target-focused synchronization facilitates the
integration with unaligned release cycles. Developing multiple variants using clone-and-
own and branches of a version control system, variants may have have different release
dates. Using target-focused synchronization, variants are developed separately and if
one variant was not regularly developed and should be prepared as a release candidate,
then this variant gets the relevant that changes that occurred in the meantime in other
variants.
Nevertheless, the target-focused synchronization has the drawback that synchronization
of a variant could cause high effort. If the variant was not synchronized for a long time,
probably a huge amount of changes occurred in other variants. Merging these changes
into the variant can be a time-consuming task. Moreover, the developer performing
target-focused synchronization is probably not an expert of changes that need to be
synchronized into the synchronization target. For example, developer one works on
variant D of Figure 3.4. Then, developer two performs target-focused synchronization
of variant C. Now, developer two synchronizes changes that occurred in variant D. The
problem is that developer two is probably not an expert of changes that developer one
performed. So, developer two may have problems during manual conflict resolution be-
cause he cannot estimate the significance of the changes. Furthermore, target-focused
synchronization could lead to ordering conflicts because changes are not ordered in the
same order that they occurred. They are admittedly ordered inside a feature expression
of a variant, but changes are not ordered across variants. For example, a developer works
in variant A and variant B on feature expression f1. He first changes code of variant A
and propagates this change to variant B. Then, the developer works on variant B and
implements a function that depends on that code he synchronized from variant A. Now,
another developer, who is not familiar with the development of variant A, synchronizes
variant C using the target-focused synchronization. For feature expression f1, the two
changes in variant A and variant B are listed. The unfamiliar developer does not know
that the change in variant B depends on code that was changed in variant A and only
merges the change of variant B into variant C. As a result, the merged code contains
an error because the code requires the former change in variant A. So, variant C has
incorrect code. Additionally, ordering conflicts could also appear if a change inside one
feature expression might depend on former changes in other feature expressions of the
same variant. If this dependency is not modeled with constraints on features or feature
expressions, the synchronization will cause a conflict. The problem of ordering conflicts
needs to be resolved on the implementation level, for example by introducing a global
timestamp that orders the change propagation across different variants.

3.3.2 Source-Focused Synchronization

The source-focused synchronization focuses on propagating changes that are tagged to
the same feature expression in different variants. This strategy includes that changes
inside one variant need to be actively propagated to other variants. The workflow using
source-focused synchronization is as follows: A developer works on a variant and im-
plements new functionality. Applying code to feature tagging, changed code fragments

3.3. Automating the Synchronization 39

Figure 3.5: Example of a Source-Focused Synchronization

are mapped to feature expressions. Now, the developer chooses a feature expression
of a variant and actively propagates these changes to compatible target variants. For
example, in Figure 3.5, a change occurs in feature expression F2 of an arbitrary variant.
Applying source-focused synchronization, this change is actively merged into compati-
ble target variants A and B, which both implement feature expression F2.
The source-focused synchronization has several advantages. If each change is regularly
propagated to all compatible propagation targets, variants are synchronized. Regularly
applying source-focused synchronization retains all variants on the same implementation
level. Moreover, the amount of incorrect synchronizations that are caused by missing
domain knowledge about the propagation target is reduced. One developer changes a
variant and another developer, who is an expert on the propagation target, performs the
change propagation and merges the changes into the target variant. Additionally, prop-
agating all changes of a feature expression into all variants implementing that feature
expression adjusts release cycles of variants. If each variant receives a change imme-
diately after the change occurred, then all variants are synchronous concerning code
changes. If a variant should be released, then this variant already contains all relevant
changes that occurred in the meantime in other variants. This process is similar to the
generation of variants in product lines. If generated variants are composed of reusable
software artifacts, then the code of these artifacts is developed in the same release cycle.
However, change propagation has several risks. Assume, a developer works on a variant
and is an expert of this variant. If this developer tries to propagate changes into vari-
ants he is unfamiliar with, he could propagate changes into compatible target variants
which do not need to be synchronized for distinct reasons. For example, variant A and
variant B implement the same function with two different algorithms. The algorithm
of variant A is imprecise but fast, whereas the algorithm of variant B computes pre-

40 3. Synchronization of Software Variants

cise results but is significantly slower. Thus, changes of the algorithm of variant A do
not need to be synchronized into the algorithm of variant B, because both algorithms
have completely different implementations. Furthermore, the consequent propagation of
changes requires increased development effort. Additional to conventional development,
the developer needs to either directly propagate a change after the change occurred or
propagate a collection of changes after finishing the implementation applying source-
centric synchronization in a batch mode, which we introduce in the following section.
The longer changes are not propagated during development, the more the propagation
effort increases. If changes are not directly propagated, then merge frequency will de-
crease. A decreased merge frequency, however, could lead to ordering conflicts during
synchronization, as we explained in Section 3.3.

3.4 Synchronizing in Batch Mode

Using target-focused synchronization, the developer has to select changes in several
sources to synchronize them into the target variant. Using source-focused synchro-
nization, the developer has to propagate each change into selected and valid synchro-
nization targets. However, synchronizing single changes causes effort for target-focused
and source-focused synchronization. To reduce synchronization effort, we introduce a
so-called batch mode that synchronizes a collection of changes. This batch mode au-
tomates the change propagation with source-focused synchronization as well as variant
synchronization with target-focused synchronization.

3.5 Summary

In this chapter, we discussed benefits and drawbacks of variant development for few as
well as many variants using clone-and-own or product-line techniques. We described
the gap between single-system engineering and product-line engineering to develop a
small number of variants which could increase over time. With VariantSync, we intro-
duced into a light-weight and language-agnostic strategy to bridge this gap by making
the development of few variants more efficient and reducing the effort for product-line
migration. We presented a concept to automate the identification of synchronization
targets by accumulating domain knowledge. For this purpose, we discussed different
strategies to tag code to features. Moreover, we introduced into challenges to auto-
mate the synchronization between variants. We presented and discussed strategies to
synchronize variants from different points of view. Finally, we introduced a concept to
automate the synchronization of variants using the batch mode.

4. Implementation: Variant
Synchronization with
VariantSync

In Chapter 3, we presented VariantSync to support the development of variants by
automating the synchronization. To establish an automated synchronization, we make
domain knowledge explicit for tool support and synchronize changes in compatible
target variants. In this chapter, we first discuss platforms on which VariantSync could
be realized. Then, we describe our implementation of VariantSync on a synchronization
platform to show that this concept is applicable. For this purpose, we implement an
Eclipse plug-in for variant-based software development, called VariantSync.

4.1 Synchronization Platforms

In this section, we discuss platforms on which VariantSync could be realized. In many
cases, variant development with clone-and-own uses tools from single-system engineer-
ing. Developers typically use an integrated development environment (IDE) to imple-
ment a software system, such as the Eclipse IDE or Visual Studio, and use a version
control system to track their changes during development, such as Git or Subversion.
Because developers are familiar with these tools, we discuss these tools as a possible
synchronization platform. In order to implement VariantSync on a certain synchroniza-
tion platform, the synchronization platform needs to support the automated identifi-
cation of synchronization targets and the automated synchronization of changes. For
this purpose, an appropriate synchronization platform should support the realization
of following VariantSync tasks:

42 4. Implementation: Variant Synchronization with VariantSync

1. Apply a tagging strategy.

2. Detect changes on code fragments.

3. Synchronize changes using source-focused or target-focused synchronization.

4. Automatically synchronize changes in a batch mode.

To realize target-focused as well as source-focused synchronization, synchronization
platforms need to be extended. In the following two subsections, we describe how to
extend synchronization platforms and discuss benefits and drawbacks using a version
control system or an integrated development environment as a synchronization plat-
form. As part of the discussion, we refer how each synchronization platform realizes
the previously specified functions.

4.1.1 Version Control System

As we introduced in Section 2.2.2 on page 19, version control systems track the de-
velopment of software systems. In the following, we determine how version control
systems support concepts of VariantSync. On the one hand, version control systems
support the detection of changed code fragments using techniques to compute the dif-
ferences between files as well as the synchronization using merge techniques. On the
other hand, version control systems are not able to provide a code tagging without user-
specific customizations. However, version control systems are not primary designed to
be extensible regarding user-written extensions. As a consequence, extending a version
control system to use it as a synchronization platform differs among concrete version
control systems.
In the following, we exemplarily show possible extension concepts that are realized in
concrete version control systems. For this purpose, we refer to Git [Cha15], Mercurial
[Bab15] and Subversion [Fou15] as implementations of version control systems. Basi-
cally, Git consists of shell scripts and Unix commands that are summarized to a common
library or a git executable. Extending Git requires to write own shell scripts and install
them as a client-side or server-side hook [CS14]. A hook is a small program that is
triggered by repository events [CSFP08]. Hooks perform distinct tasks and either run
in advance of a repository event or after the completion of a repository event. Similarly
to Git, Subversion can also be extended using repository hooks. Moreover, Mercurial
also provides extensibility via hooks. As opposed to Git and Subversion, Mercurial ad-
ditionally provides an API which supports the development of user-defined extensions,
similarly to the plug-in concept of integrated development environments [O’S09].
As a reason to use version control systems as a synchronization platform, version control
systems are widely used. Nearly each industrial or open-source software project uses
a version control system to track changes or to collaborate on projects where several
developers work on the same code. Furthermore, two core functions of each version
control system are to compute the difference between two revisions and to merge one
branch into another branch. Both functions are also tasks of VariantSync. Detecting

4.1. Synchronization Platforms 43

code changes between two revisions of a file can be achieved using techniques of the
version control system to compute differences between files. Besides, synchronizing one
change into a synchronization target can be supported using existing merge techniques.
Nevertheless, there are some significant drawbacks extending version control systems to
implement functionality of VariantSync. Version control systems do not provide all the
necessary functions to perform VariantSync, such as applying code to feature tagging or
visualizing tagging information. Unfortunately, extensibility depends on the concrete
version control system. If the concrete system does not provide extension points, then
this version control system is inappropriate to be extended for VariantSync. Further-
more, version control systems cannot perform code tagging. For this purpose, version
control systems need to be extended. The extension needs to analyze the commits and
map changed code fragments to features. To select which features need to be mapped
to which code fragments, the extension needs a concept to communicate with the de-
veloper, for example committing specified files with mapping information or directly
asking via command line or interacting via a graphical user interface (GUI). In addi-
tion, the developer does not get visual feedback about code tagging. The extension
could admittedly provide a graphical user interface that visualizes tagging, like code
highlighting in code editors of integrated development environments, but implementing
a visualization requires a high effort. Instead, existing graphical user interfaces for ver-
sion control systems could be extended. For example, TortoiseHg1 is a graphical user
interface for Mercurial which provides certain visualizations, such as a commit dialog
that shows differences between commits or a view that shows the development history
for different branches. TortoiseHg could be extended to visualize code to feature tag-
ging. Nevertheless, adapting graphical user interfaces has two drawbacks. First, the
graphical user interface is an external tool that is not integrated in an development
environment. For each change, the developer needs to switch from the integrated de-
velopment environment to the external tool to map code to features. Second, external
tools does not have a concept to provide code tagging with feature-expression contexts.
This concept needs additionally to be implemented. So, compared to the adaption of
existing technologies in integrated development environments, the processes of mapping
code to features and visualizing code tagging require high effort to either implement an
extension from scratch or adapt existing graphical user interfaces.

4.1.2 Integrated Development Environment

An integrated development environment is a platform that supports software develop-
ment processes by reducing development costs and increasing effectiveness regarding
the development of application systems [New82]. Furthermore, an integrated develop-
ment environment provides mechanisms to communicate with developers. Integrated
development environments further ease the expression and understanding of designs
and implementations [New82]. Regarding ongoing development of technologies sup-
porting and facilitating development processes, integrated development environments
need to be extensible concerning new data models, high-level language extensions and

1http://tortoisehg.bitbucket.org/, retrieved on 17.12.2015

44 4. Implementation: Variant Synchronization with VariantSync

system executability [New82]. Today, most modern and popular integrated develop-
ment environments fulfill the requirement of extensibility. Modern integrated develop-
ment environments are characterized by a plug-in architecture that enables developer
to customize them to their needs by integrating plug-ins. For example, Eclipse and
Visual Studio are the most popular integrated development environments, based on the
fact how often integrated development environments are searched on Google2. Both
are extensible via plug-ins. Furthermore, most integrated development environments
support plug-in development providing tool support and an application programming
interface, like the Eclipse plug-in development environment or Visual Studio software
development kit. Consequently, integrated development environments can be extended
to realize VariantSync as a plug-in.
As an advantage, integrated development environments are widespread distributed in
industrial as well as academic software development. Most popular and extensible
development environments provide a kind of global market place that supports the dis-
tribution and installation of plug-ins. Hence, implementing VariantSync as an plug-in
for an integrated development environment increases the probability to install Variant-
Sync on a high number of target systems.
A further advantage is the presented extensibility concept. A plug-in can use compre-
hensive functionality provided by the integrated development environment or another
plug-in. Most integrated development environments provide comprehensive code edi-
tors. Code editors facilitate development of source code providing functions like syntax
highlighting or auto completion. Applying code to feature tagging in a code editor
enables us to visualize feedback about tagged code using background highlighting and
code annotations. For example, code mapped to a feature can be colored in a cer-
tain background color and an annotation at the left margin of the editor describes the
mapped feature, as we show in Figure 4.1. All code fragments mapped to the same
feature are colored in the same background color. Using background colors avoids code
pollution and supports understanding of feature mapping [Käs10]. As a consequence,
the developer retains the overview about code changes in different features, especially
if many changes need to be synchronized. We use this concept of code highlighting in
the implementation of VariantSync.
Moreover, the use of code editors supports tagging with feature-expression contexts. Be-
fore developing a feature, the developer only needs to activate the context. Then, each
change in the code editor is directly and easily tagged to the active feature-expression
context. As a result, tagging is performed during development.
Finally, code editors simplify the detection of code changes. Integrated development
environments monitor code files that are managed in the given environment, for ex-
ample a workspace in case of using Eclipse. File monitoring supports change detection
notifying which code fragments are changed during development and need to be tagged.
For example, a developer changes three functions of a code file and saves his work. To
identify changed code, the difference between the two latest revisions of the changed file
needs to be computed. Due to the fact that integrated development environments save

2http://pypl.github.io/IDE.html, retrieved on 14.12.2015

4.1. Synchronization Platforms 45

Figure 4.1: Visualization of Code to Feature Tagging in Eclipse

the history of files, the two latest revisions of a file can easily retrieved and compared
to identify changes. Admittedly, version control systems are also able to compute file
changes, but they only compute changes after the files are committed. Indeed, inte-
gration development environments directly compute changes while the developer writes
code. This has the advantage that the developer can directly tag the code. If the
developer tags all changes after performing a commit, then he potentially could forget
to which feature expression(s) the changes need to be tagged.
However, computing the difference between two files as well as merging changed code
into a file do not belong to the core tasks of integrated development environments. Due
to the facts that it is a challenging task to implement diff & merge functionality and
that well-designed diff & merge algorithms already exist, it would be desirable to use
existing implementations. As a solution, integrated development environments can be
extended with plug-ins that provide diff & merge functionality, e.g., extending Eclipse
with Eclipse Compare Packages.
Beside diff & merge functionality, the VariantSync workflow requires changes as com-
pared to clone-and-own. A developer needs to be worked in to efficiently use the new
plug-in. For example, implementing Java applications minimally requires an editor to
create and change code files. VariantSync additionally needs to maintain a list of fea-
tures for each variant, applying code tagging, starting target-focused or source-focused
batch synchronization and resolving conflicts in case that the synchronization cannot
be automatically performed.

4.1.3 Summary

Version control systems as well as integrated development environments are widely
used and provide functions to support some of the tasks of VariantSync, but not all

46 4. Implementation: Variant Synchronization with VariantSync

of them. In particular, version control systems provide functionality to support change
detection and change synchronization into given synchronization targets and integrated
development environments provide functionality to support fine-granular tagging inside
a context. VariantSync can be applied on both target platforms if they are extended
to support missing tasks of VariantSync.
In contrast to version control systems, integrated development environments have the
major benefit that tagging can be visualized with less effort, so that the developer can
directly profit from visual feedback, like code highlighting.
Hence, we choose an integrated development environment as a synchronization platform
to implement VariantSync, which is also in line with the prior prototype to support
variant development by synchronizing fine-granular changes between variants [Luo12].

4.2 External Tools

In Section 4.1, we discussed version control systems and integrated development envi-
ronment concerning their applicability to support VariantSync. Based on this discus-
sion, we decided to use an integrated development environment as a synchronization
platform. To realize VariantSync as an extension for an integrated development envi-
ronment, we need several external tools. Obviously, we need an integrated development
environment, which we introduce in Section 4.2.1. We further need to extend the inte-
grated development environment with extensions to support tasks of VariantSync, as
we described in Section 4.1.1 and Section 4.1.2. For this purpose, we use FeatureIDE
(Section 4.2.2) to support feature modeling, and java-diff-utils (Section 4.2.3) to extend
the integrated development environment with diff & merge functionality.

4.2.1 Eclipse IDE

We decide to develop VariantSync as an extension of an integrated development en-
vironment and use Eclipse as the technical synchronization platform. Our decision is
based on three reasons.
First, Eclipse provides a comprehensive extensibility via plug-ins that enables develop-
ers to customize the environment with tailored functionality. Eclipse can customized to
be a development environment supporting single software development of Java appli-
cations using Java Development Tools3 (JDT plug-in) as well as custom development
paradigms, like the development of product-lines. To fulfill tasks of VariantSync (Sec-
tion 4.1), Eclipse provides code editors that support tagging and change detection, as
we described in Section 4.1.2. Furthermore, extensions like EMF Diff/Merge4 or other
diff & merge packages support the synchronization of variants.
Second, using Eclipse enables us to adapt functionality of FeatureIDE to support fea-
ture modeling. For example, there are extensions that support modeling variability in a
domain, such as the feature diagram editor of FeatureIDE 5. We introduce FeatureIDE

3http://www.eclipse.org/jdt/, retrieved on 02.12.2015
4http://www.eclipse.org/diffmerge/, retrieved on 02.12.2015
5http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/, retrieved on 02.12.2015

4.2. External Tools 47

in the following section.
Third, VariantSync is independent of a programming language. For this purpose, the
integrated development environment also needs to support software development inde-
pendent of a specific programming language. The Eclipse platform provides software
development independent of a programming language. To develop software with a spe-
cific programming language, the developer only needs to install an appropriate plug-in.
For example, the Eclipse platform can be extended with the JDT plug-in to develop
Java applications. In contrast, using the C/C++ Development Tooling6 (CDT plug-in)
enables the Eclipse platform to support the development of C/C++ applications.
In the following two sections, we present Eclipse extensions to support feature modeling
using FeatureIDE and diff & merge functionality using java-diff-utils.

4.2.2 FeatureIDE

FeatureIDE is an open-source framework for feature-oriented software de-
velopment (FOSD) based on Eclipse. [TKB+14]

FeatureIDE supports feature-oriented software development and provides tools to imple-
ment product lines in Eclipse. To give a short overview, FeatureIDE supports domain
analysis by providing, among others, a graphical editor for feature modeling, a fea-
ture constraint editor and feature-model refactoring using the feature-model edit view.
Requirement analysis is supported by a feature-configuration editor. Moreover, to sup-
port the domain implementation, FeatureIDE provides several product-line implemen-
tation techniques and languages like feature-oriented programming using FeatureHouse
[TKB+14].
VariantSync uses and adapts several functions of FeatureIDE which consists of multi-
ple Eclipse features that can be combined to create a tailored integrated development
environment. In this context, an Eclipse feature is a bundle of one or more Eclipse
plug-ins. Due to the reuse-friendly architecture of FeatureIDE, we can reuse func-
tions of FeatureIDE by including these bundles into VariantSync. We use the plug-in
de.ovgu.featureide.fm.core to manage and maintain features and feature configurations,
including constraints on feature models. Furthermore, we use the graphical feature-
model editor to enable the developer within the creation of feature models and we
adapt the constraint editor to create and manage feature expressions. Both editors are
located in the bundle de.ovgu.featureide.fm.ui. To summarize, VariantSync uses func-
tions of FeatureIDE to model, manage and maintain features and feature expressions.

4.2.3 Diff Utilities

In Section 3.3 on page 34, we presented challenges to automate the synchronization of
variants. The first challenge is to compute valid synchronization targets. As we pre-
sented in the previous section, we adapt functionality of FeatureIDE to determine which
changes need to be synchronized into which variants. So, determining changes of files

6https://eclipse.org/cdt/, retrieved on 02.12.2015

48 4. Implementation: Variant Synchronization with VariantSync

and merging changes from one file into another file are core functions of VariantSync.
Both functions need to compute the difference between two files or fragments of two
files. Concerning a diff & merge implementation, we have three requirements:

• Compute the difference between two text files.

• Compute possible merge conflicts using a three-way merge technique.

• Perform a three-way merge.

1 Patch DiffUtils.diff(List<?> original, List<?> revised)

Listing 4.1: Computing the Delta of Two Text Fragments

1 List<?> DiffUtils.patch(List<?> original, Patch patch)
2 throws PatchFailedException

Listing 4.2: Merging Text Fragements

Due to the fact that we want to synchronize software artifacts language-independent
with VariantSync, we decide to use lexical diff & merge operations instead of syntacti-
cal diff & merge operations. To perform diff & merge operations on text files, Eclipse
needs to be extended. We do not use Eclipse Compare Packages or EMF Diff/Merge
Packages. In contrast, we decide to use java-diff-utils7 which is a small open-source
library providing a robust algorithm to determine the differences between plain text
files [Mye86].
We use java-diff-utils to create a patch of two versions of a file to support the identifi-
cation of merge conflicts between two files regarding a common ancestor, and to apply
merging changes into a target file. In this context, a patch is the difference between two
versions of the same file. We concretely use the function in Listing 4.1 to compute the
difference between the original and revised sequence of text and the function in List-
ing 4.2 to perform a merge. To identify merge conflicts, we use an algorithm that checks
whether the deltas of a three-way comparison are compatible. Deltas of two files are
identified by computing the patch of these files. A delta describes a difference between
two files. For this purpose, a delta describes the position of changed lines containing
old lines and new lines of the difference. Applying the three-way merge technique, the
algorithm compares two lists of deltas and determines whether deltas could be merged
into the target file without causing a conflict.

4.3 Change Management

One of VariantSync’s core tasks is to synchronize changes between variants. To achieve
this, we need to manage changes in an appropriate manner. First, file changes during

7https://code.google.com/p/java-diff-utils/, retrieved on 02.12.2015

4.3. Change Management 49

work sessions of a developer need to be detected. Second, these changes need to be
persistently saved in a change history to decouple implementation from synchronization.
For this purpose, we present a change management fulfilling both tasks in the following
two sections.

4.3.1 Change Detection

To determine changes in variants, we use Eclipse functions. First, we register and
implement the IResourceChangeListener. This listener notices changes on resources in
the workspace. For example, the listener notices that a user saves a file in Eclipse or
refreshes the Eclipse workspace. After a changed resource is determined, we evaluate
the type of the change. If a resource was added or removed, we do not need to compute
the difference between the previous and current version of the file. Instead, we save the
content of the resource if the resource was added, and we save the name of the resource
if the resource was removed. If the resource was changed, we need to determine all
changes that occurred between the previous and the current save action.
Second, we retrieve the previous version of the changed file using the IFile interface.
Eclipse saves past states of each file in the workspace in a list that is descending ordered
by timestamps. So, we retrieve the history of a IFile object and get a list of past states.
The first state is the version of the file that does not contain the change.
Third, we compute the difference between the previous version and the current version
of the changed file using java-diff-utils. The java-diff-utils library returns the difference
as a patch object. A patch describes the difference between original and revised text
sequences. Listing 4.3 shows the method of VariantSync that implements the change
computation after the IResourceChangeListener has notified a changed resource.

4.3.2 Change History

In order to decouple implementation from synchronization, we make change information
explicit. For this purpose, we store code changes independent from the implementation
of a variant in a change history. If a developer changes code in a variant and saves the
changed file, then this code fragment will be tagged to a feature expression depending
on the context. We persistently save the change information as a snapshot and add
them to the change history, as we visualized in Figure 4.2. The change history is a
first-in-first-out queue. A change entry in the change history consists of two snapshots
of the changed file and a timestamp indicating when the change occurred. The first
snapshot represents the version of the file before the change was performed. The second
snapshot shows the file after the code was changed. Both snapshots are necessary for the
posterior three-way merge because the first snapshot will be the common ancestor and
the second snapshot will be the left version of the three-way merge, as we introduced
in Section 2.3.1 on page 21. With the change history, we decouple the process of
changing code fragments and propagating changes to other compatible variants.

50 4. Implementation: Variant Synchronization with VariantSync

Figure 4.2: Change History

4.4. Code to Feature Mapping 51

1 /∗∗
2 ∗ Computes the difference (delta) between the actual and ancient
3 ∗ version of the changed file.
4 ∗
5 ∗ @param res
6 ∗ changed file
7 ∗/
8 public void createPatch(IResource res) {
9 IFile currentFile = (IFile) res;

10 IFileState[] states = null;
11 try {
12 states = currentFile.getHistory(null);
13 } catch (CoreException e) {
14 LogOperations.logError(ERROR_FILE_STATES, e);
15 return;
16 }
17 List<String> currentFilelines = Util.getFileLines(res);
18 List<String> historyFilelines = null;
19 try {
20 historyFilelines = persistanceOperations.readFile(
21 states[0].getContents(), states[0].getCharset());
22 } catch (CoreException | FileOperationException e) {
23 LogOperations.logError(ERROR_FILE_STATES, e);
24 }
25
26 Patch patch = externalDeltaOperations.computeDifference(
27 historyFilelines, currentFilelines);
28 [...]
29 }

Listing 4.3: Determining Changes of a File in VariantSync

4.4 Code to Feature Mapping

To automate the synchronization of variants, we need to compute valid synchronization
targets that need to be synchronized with changes from a requirements perspective.
In Section 3.2.1 on page 29, we pointed out that we need to make domain knowledge
explicit for tool support to automate the identification of synchronization targets. For
this purpose, we adopt functionality of FeatureIDE to create feature models, derive
feature configurations and create feature expressions (Section 4.4.1). Then, we make
domain knowledge explicit by applying the tagging with feature-expression contexts
strategy (Section 4.4.2).

4.4.1 Feature Modeling

To model variability, the workspace needs to contain a project called variantsyncFea-
tureInfo. This project contains a feature model to describe variability for all variants.
Furthermore, the project variantSyncFeatureInfo contains feature configurations de-
rived from the feature model, where the variability of each variant is represented by

52 4. Implementation: Variant Synchronization with VariantSync

Figure 4.3: Feature Model Editor with the Feature Model of DesktopSearcher

a feature configuration. The feature configuration needs to have the same name than
the variant it represents. For example, a variant called WindowsDesktopSearcher is
described by a feature configuration with the name WindowsDesktopSearcher.config.
This variant is an Eclipse project. To support the creation of feature models and the
derivation of feature configurations in VariantSync, we use existing functionality of Fea-
tureIDE. We reuse the graphical feature model editor as well as the feature configuration
editor from the bundle de.ovgu.featureide.fm.ui. Figure 4.3 shows the feature model of
the DesktopSearcher project that was created by the graphical feature model editor.
The editor enables the developer to create or rename features as well as moving features
via drag & drop [TKB+14]. Moreover, the feature configuration editor supports the de-
veloper to choose a feature selection based on the given feature model, as we show in
Figure 4.4. Among others, the feature configuration editor indicates whether a chosen
feature configuration is valid or invalid [TKB+14].
In general, it is not necessary that VariantSync uses a feature model for variability
descriptions. VariantSync only needs a list of features that exist in a domain. For
example, all features could be listed as optional features under the same root element.
Furthermore, VariantSync only needs a list of features for each variant instead of fea-
ture configurations. However, we use feature models and feature configurations because
they facilitate variant development, e.g., by detecting invalid feature relationships.
As we described in Section 3.2.2 on page 30, we use feature expressions to handle the
feature interaction problem (Section 2.1.2 on page 12) as well as code that belong to

4.4. Code to Feature Mapping 53

Figure 4.4: Feature Configurations of Two Different Variants

multiple features. Using the feature model, we retrieve all features that are modeled
in the domain. With the help of feature configurations, we know which features each
variant implements. To create feature expressions derived from the feature model, we
provide a graphical editor. The editor for cross-tree constraints of FeatureIDE enables
the developer to create feature constraints for a given feature model by checking the
syntax of the modeled constraint and providing a context assist during the creation of
feature expressions [TKB+14]. We adapt the editor for cross-tree constraints to use it
for the creation of feature expressions in VariantSync, as we show in Figure 4.5.
Finally, we need to evaluate if a feature expression is included by a feature configura-
tion. For this purpose, we represent both feature expressions and feature configurations
as propositional formulas. We use a boolean satisfiability problem solver (SAT-solver)
to determine whether the propositional formula of the feature configuration is satisfied
by the propositional formula of the feature expression. To be more precise, we use the
SAT-solver that is included in FeatureIDE, as we show in Listing 4.4.

4.4.2 Tagging Code to Features

Due to the fact that we decided to implement VariantSync as an Eclipse plug-in, we are
able to implement manual tagging as well as tagging with feature-expression contexts.
Furthermore, we are able to adapt the code editor of Eclipse to give the developer
visual feedback about tagged code. In the scope of the prototypical implementation

54 4. Implementation: Variant Synchronization with VariantSync

Figure 4.5: Feature-Expression Dialog

4.4. Code to Feature Mapping 55

1 /∗∗
2 ∗ Determines whether the propositional formula of a feature
3 ∗ configuration is satisfied by the propositional formula
4 ∗ of a feature expression.
5 ∗
6 ∗ @param fc
7 ∗ maps feature names to literals
8 ∗ @param fe
9 ∗ the feature expression to validate

10 ∗/
11 public boolean evaluateFeatureExpression(Map<String, Literal> fc,
12 String fe) {
13 final int TIMEOUT = 5000;
14 Node[] formula = new Node[fc.size() + 1];
15 formula[0] = new Literal(fe, true);
16 i = 1;
17 for (Literal literal : fc.values()) {
18 formula[i++] = literal;
19 }
20 boolean isSatisfiable = false;
21 try {
22 final SatSolver solver = new SatSolver(new And(formula),
23 TIMEOUT);
24 isSatisfiable = satsolver.isSatisfiable();
25 } catch (TimeOutException e) {
26 [...]
27 }
28 return isSatisfiable;
29 }

Listing 4.4: SAT-Solver to Validate Feature Expressions against Feature Configurations

of VariantSync, we decided to implement the tagging with feature-expression contexts
strategy to support the automated code to feature mapping. In the following, we first
determine how we visualize tagged code in the Eclipse editor. Then, we describe how
we implemented the tagging with feature-expression contexts strategy.

Visualizing Tagged Code

In Section 3.2.2 on page 30, we described our goal to avoid code obfuscation through tag-
ging. Hence, we decided to avoid code annotations by storing code to feature mapping
as metadata. For this purpose, we adopt the code visualization concept of CIDE (Col-
ored IDE), an Eclipse plug-in supporting product-line development based on conditional
compilation [Käs10]. CIDE has the goal to avoid obfuscated source code using ifdef
preprocessor statements. To improve the understanding and to maintain code contain-
ing ifdef statements, CIDE visualizes features with colors. Each feature is assigned to a
certain color. In the Eclipse editor, code that belongs to a feature will be colored in the
assigned color. We use this concept to visualize the code to feature tagging in Variant-
Sync. Eclipse provides direct access to the editor. Due to this possibility, we are able to

56 4. Implementation: Variant Synchronization with VariantSync

visualize tagging information by highlighting code that belongs to a feature expression
in a certain color. To realize code highlighting, we extend our plug-in with an ex-
tension point to create markers (org.eclipse.ui.editors.markerAnnotationSpecification).
Figure 4.1 shows the visualization of tagged code. The class FeatureImplementation.java
contains code that belongs to two different features. Code of Feature 1 has a yellow
background color, code tagged to Feature 2 has a green background. A mouse-over
event names the tagged feature expression as a tool tip for the underlying code. This
representation of tagging information keeps the code clean and provides all information
that an annotation would also provide. Unfortunately, product lines typically support
several hundred features. So, domains describing all variants managed by VariantSync
can also consist of a high number of features. It is not useful to map each feature to
a different color because humans cannot distinguish a high number of similar colors
without direct comparison. CIDE solves this problem by allowing a developer to assign
the same color to more than one feature and indicating the feature of a colored code
fragment by using tool tips [FKF+10]. We adapt this concept and introduce a color
dialog with nine predefined colors, as we show in Figure 4.6. The developer can assign
each feature expression to a predefined color. If a color is changed, then existing code
highlightings in an open editor will be adapted.

Figure 4.6: Color Dialog of Feature Expressions

Implementation: Tagging Inside a Feature-Expression Context

To perform tagging inside a feature-expression context, the developer starts to develop
under a context by selecting a feature expression, as we show in Figure 4.7. Then, each
change in the Eclipse editor is automatically tagged to the chosen feature expression. If
the developer switches or deactivates the context, or if a variant changes, tagged code
will be saved persistently. In the following, we explain the process to automatically tag

4.4. Code to Feature Mapping 57

Figure 4.7: Activating a Feature-Expression Context

code changes to a feature expression in detail. We split the process into two steps. First,
we describe the algorithm that activates a context. Then, we introduce the tagging
algorithm. We further describe the interaction between the developer and VariantSync.

Figure 4.8 shows the process to activate a context. The developer wants to work on
code inside a variant. To activate the context, the developer opens a list of available
feature expressions. On the one hand, the list contains all features that are defined in
the feature model of the domain of the variants. On the other hand, the list contains
all user-defined feature expressions. Then, the developer chooses the feature expression
he wants to work on. Now, the context is active.
While the context is active, all changes are tagged, as we described in Figure 4.9. The
developer can work on one or several variants by adding, changing, or deleting code. If
the developer saves a file, then VariantSync starts the process to tag the changed code
to the feature expression of the context. The process consists of four steps:

1. Compute changes.

2. Tag changed code to a feature expression.

3. Save changed and tagged code.

4. Refresh the editor.

As the first step, we determine all changes that occurred between the previous and the
current save action. As we described in Section 4.3.1, we retrieve the previous version
of the changed file using Eclipse functions. Then, we compute the difference between

58 4. Implementation: Variant Synchronization with VariantSync

Figure 4.8: Process to Enable a Feature-Expression Context

Figure 4.9: Process to Automatically Tag Code to a Feature Expression Context

4.4. Code to Feature Mapping 59

the previous version and the actual version of the changed file using java-diff-utils.
As the second step, we map the changed code to a feature expression by inserting
changed code fragments into the data structure of the active context. A context consists
of a feature expression, a color for code highlighting, a map to log synchronized changes
and a list of variants that contain changes which are tagged to the feature expression of
the context, as we show in Figure 4.10. If code of a variant is changed inside a context,
then an object will be created. This object represents the changed variant and contains
the changed code. In the data model, we describe variants in the same way that they
exist in the workspace. So, a variant is represented by a collection of folders and files.
This data model includes the change history that we introduced in Section 4.3.2.

Figure 4.10: Data Model to Describe Feature Expression Contexts

As the third step, the presented data structure needs to be persistently saved. For this
purpose, we save each context object in a XML file using JAXB8. JAXB is a framework
that supports developers to transform Java elements to XML representations and vice
versa. The XML files are saved in a sub folder of the variantsyncFeatureInfo project in
the workspace. Listing 4.5 shows the content of a XML file that represents a feature-
expression context.
As the fourth step, we refresh the editor by highlighting the changed and tagged code.
For this purpose, we create a marker for each code change. A marker consists of a
color, line numbers and the feature expression. Each marker is assigned to the changed
file, highlights the tagged code and adds an annotation in the left bar of the editor by
quoting the feature expression, as we show in Figure 4.1.

8http://www.oracle.com/technetwork/articles/javase/index-140168.html, retrieved on 06.12.2015

60 4. Implementation: Variant Synchronization with VariantSync

1 <?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes "?>
2 <Context>
3 <changeLog/>
4 <color>YELLOW</color>
5 <featureExpression>HTML_Parser</featureExpression>
6 <variants>
7 <entry>
8 <key>Variant_1</key>
9 <value>

10 <member xmlns:xsi=http://www.w3.org/2001/XMLSchema−instance
11 xsi:type=javaPackage>
12 <member xsi:type=javaClass>
13 <changes>
14 <change>
15 <baseVersion code=public class HTML extends ContentHandler {
16 line=31 mapped=false>
17 [...]
18 <newVersion code=public class HTML extends ContentHandler {
19 line=31 mapped=false>
20 [...]
21 </change>
22 <code>
23 <codeline code=public void show(); line=13 mapped=true>
24 [...]
25 </code>
26 <name>HTML.java</name>
27 <path>Variant_1/src/html/HTML.java</path>
28 <name>html</name>
29 <path>Variant_1/src/html</path>
30 </member>
31 <name>Variant_1</name>
32 <path>Z:/runtime−EclipseApplication/Variant_1</path>
33 <variant>Variant_1</variant>
34 [...]

Listing 4.5: Feature-Expression Context in XML Representation

4.5 Applying Automated Synchronization

In Section 4.4.1, we use concepts of feature modeling to model variability. Furthermore,
we make domain knowledge explicit by applying the tagging with feature-expression
contexts strategy. In this section, we automate the synchronization of changed code
fragments. As the first step, we need to compute valid synchronization targets, as we
described in Section 3.3 on page 34. To achieve this, we describe our implementa-
tion to detect synchronization targets in Section 4.5.1. Through the change history
(Section 4.3.2), we are able to compute valid synchronization targets for changed code
fragments from two different points of view. For this purpose, we implement two Eclipse
views (Section 4.5.2 and Section 4.5.3). The target-focused synchronization view re-
alizes target-focused synchronization, whereas the source-focused synchronization view
implements source-focused synchronization. Both Eclipse views use our realization

4.5. Applying Automated Synchronization 61

of automated and manual merging, which are presented in Section 4.5.4. Moreover,
target-focused synchronization and source-focused synchronization can be automati-
cally applied in a batch mode. We describe this batch synchronization in Section 4.5.5.

4.5.1 Computing Synchronization Targets

In Section 3.3 on page 34, we introduced three classes of synchronization targets: vari-
ants to synchronize, variants without merge conflicts and variants for automated syn-
chronization. Hence, on coarse granularity, a valid synchronization target is a variant
that is classified as a variant to synchronize. On the granularity of files, a file is a valid
synchronization target if it meets the following requirements:

1. Synchronization targets have the same name and path as the changed file.

2. Synchronization targets are not located in the same variant as the changed file.

3. Synchronization targets are located in variants that implement the feature ex-
pression that the changed code is tagged to.

4. Synchronization targets have not already been synchronized with the given change.

Due to the data structure of a context (Figure 4.10), the first two requirements are
easily met by iterating over the elements of a variant and comparing variant names
and file names. To meet the third requirement, we evaluate the feature expression that
the changed code is tagged to against feature configurations of target variants using
a SAT-solver, as we described in Section 4.4.1. To fulfill the fourth requirement, we
implement a change-log map. After propagating a change into a synchronization target,
this change is logged in the change-log map. A change-log describes the change with its
time-stamp and the synchronization target. The change-log map prevents a duplicated
synchronization of a change into the same synchronization target. As we presented in
Figure 4.10, the change-log map is part of the context data structure. Thus, the map
is persistently saved together with change and tagging information.

4.5.2 Synchronizing with Target-Focused Synchronization

The target-focused synchronization view enables the developer to perform the target-
focused synchronization strategy, which was presented in Section 3.3.1 on page 36.
Using the target-focused synchronization view, a developer updates a variant. The
target-focused synchronization view aggregates all code fragments that were changed
in other variants. From a requirement’s perspective, these changes can be synchronized
into the chosen variant. Figure 4.11 shows the target-focused synchronization view
while synchronizing a single change into a chosen variant. The combo box in 1 lists
all variants that are managed by VariantSync. The developer chooses the variant that
he wants to update. Then, all feature expressions that contain changed code fragments
of other variants are listed in 2 . If the developer selects a feature expression, then

62 4. Implementation: Variant Synchronization with VariantSync

Figure 4.11: Synchronizing with the Target-Focused Synchronization View

all files containing changes mapped to the selected feature expression are shown in 3 ,

except files of the variant that was selected in 1 . After selecting a changed file in 3 ,

the target-focused synchronization view displays all changes of the selected file in 4 .
Changes are ordered by timestamps. Now, the developer selects a change entry and
the target-focused synchronization view shows the changed code fragment in 5 and
determines whether the change can be automatically merged into the chosen variant. If
the synchronization could be applied without a merge conflict, then the target-focused
synchronization view automatically merges the change into the chosen variant in 6 .

Otherwise, the developer needs to merge the change manually in 7 .

4.5.3 Synchronizing with Source-Focused Synchronization

The source-focused synchronization view enables the developer to perform the source-
focused synchronization strategy, which was presented in Section 3.3.2 on page 38. Using
the source-focused synchronization view, a developer actively propagates changed code
fragments of a feature expression into valid synchronization targets. Figure 4.12 shows
the source-focused synchronization view while synchronizing a single change. To per-
form change propagation, we decided to present the synchronization information from
the highest to smallest change aggregation-level. Highest change aggregation-level is
the feature expression that contains changed code fragments. In the combo box on
top of the view in 1 , the source-focused synchronization view lists all features that
are modeled in the feature model of the variantsyncFeatureInfo project as well as all
user-defined feature expressions that contain changes. The developer has to choose
a feature expression. Then, the source-focused synchronization view lists all variants
that contain changed code fragments tagged to the selected feature expression. The
developer chooses one of the variants listed in 2 . Afterwards, the source-focused syn-
chronization view displays those classes of the selected variant containing changed code
fragments tagged to the selected feature expression in 3 . When the developer chooses

4.5. Applying Automated Synchronization 63

Figure 4.12: Synchronizing with the Source-Focused Synchronization View

a file, then all changes of the selected file are listed in 4 , ordered by timestamps.

After selecting a change, the changed code fragment is shown in 5 and the source-
focused synchronization view computes valid synchronization targets for the automatic
and manual synchronization. If changed code can be merged into a target file without
causing a merge conflict, the synchronization will be automated in 6 . However, if a

merge conflict appears, the developer needs to perform a manual merge in 7 . If a
change is synchronized into all listed synchronization targets, then the change entry
will be removed from the source-focused synchronization view.

4.5.4 Merging Code Fragments into Variants

In Section 4.5.2 and Section 4.5.3, we described the implementation of the target-
focused and source-focused synchronization view. During the synchronization, we merge
changed code fragments into valid synchronization targets. For this purpose, we use a
lexical merge together with the three-way merge technique (Section 2.3 on page 21). If a
changed code fragment can be merged into a target variant, then we will automatically
perform the merge.

Automatic Merge

To detect merge conflicts and to perform the merge, we use java-diff-utils, as we pre-
sented in Section 4.2.3. We first perform the three-way comparison to prove whether
changes of file one (changed version) could be merged into file two (version to syn-
chronize). For this purpose, we adopted an algorithm from a prior prototype which
also supports variant development [Luo12]. As we show in Listing 4.6, this algorithm
uses java-diff-utils to compute the differences between common ancestor and changed
version and between common ancestor and the version to synchronize. As a result,

64 4. Implementation: Variant Synchronization with VariantSync

we receive two delta objects that describe the differences on a fine granularity in line
positions. Then, the algorithm checks whether a conflict between both deltas exists. A
conflict will be detected if text inside the same line differs in both deltas.

1 public boolean checkConflict(List<String> fOrigin, List<String> fLeft,
2 List<String> fRight) {
3 Patch patchAncestorWithLeftVersion = DiffUtils.diff(fOrigin,
4 fLeft);
5 Patch patchOriginWithRightVersion = DiffUtils.diff(fOrigin,
6 fRight);
7 List<Delta> deltasLeft = patchAncestorWithLeftVersion.getDeltas();
8 List<Delta> deltasRight = patchOriginWithRightVersion.getDeltas();
9 return checkConflict(deltasLeft, deltasRight);

10 }

Listing 4.6: Detecting Merge Conflicts using Three-Way Comparison

If differences between two files can be merged without a merge conflict, we perform an
automated merge. For this purpose, we again use java-diff-utils and adopted a further
algorithm from the prior prototype [Luo12]. We reuse the delta objects and create a
patch object based on the deltas. Afterwards, we use java-diff-utils to merge the deltas
into the original list. The result is a list containing each line of text of the merged class.

1 public List<String> performThreeWayMerge(List<String> fOrigin,
2 List<String> fLeft, List<String> fRight) {
3 [...]
4 List<String> result = null;
5 Patch patch = new Patch();
6 Set<Delta> deltas = new HashSet<Delta>();
7 deltas.addAll(deltasLeft);
8 deltas.addAll(deltasRight);
9 for (Delta d : deltas) {

10 patch.addDelta(d);
11 }
12 try {
13 result = (List<String>) DiffUtils.patch(origin, patch);
14 } catch (PatchFailedException e) {
15 [...]
16 }
17 return result;
18 }

Listing 4.7: Merging Two Files using Three-Way Comparison

Manual Merge

If the automatic merge process detects a merge conflict, then we will use the Eclipse
compare editor to perform a manual merge. Figure 4.13 shows the compare editor com-
paring two versions of the file Calculation.java. The compare editor shows differences

4.5. Applying Automated Synchronization 65

Figure 4.13: Manual Merge Dialog

66 4. Implementation: Variant Synchronization with VariantSync

between two files using a three-way comparison. If Java files are compared, then the
editor will additionally parse the source code to compare the semantic structure of both
files, as we show in 1 . In this example, the structured comparison indicates four dif-
ferences between left and right version, including the ancestor version for a three-way
comparison. The right version contains the field calc of type Object and the method
calc() that do not exist in the left version. Furthermore, the right version does not
contain the field result that exists in the left version. However, the left version provides
method add(int, int) for a merge into the right version.

The result of the source comparison is shown in 2 of Figure 4.13. Calculator.java of
variant Test2 differs in line five to ten from Calculator.java of variant Test1. Through
the three-way comparison with the ancestor file (Calculator.java without changed code),
we know that lines five to ten of the left version need to be merged into the right ver-
sion. The editor provides a toolbar to navigate through the differences and to copy
highlighted differences between left and right version. A difference is defined as a sec-
tion that consists of one or more consecutive lines which differ between left and right
version. Differences are highlighted in blue color, whereas a change is modified text
within a line and highlighted in red color.

4.5.5 Synchronizing in Batch Mode

Figure 4.14: Start Batch Synchronization in Source-Focused (left) and Target-Focused
Synchronization View (right)

As we presented in Section 4.5.2 and Section 4.5.3, the target-focused and source-
focused synchronization view provide the synchronization of single changes into target
variants. In both views, developers need to select feature expressions, variants, files,
change entries and synchronization targets. As an advantage, the developer has full
control about the change propagation. For example, if the developer does not want
to merge a distinct change into a synchronization target, then he can skip this syn-
chronization step. However, synchronizing single changes requires a lot of interaction
between the developer and the view because the developer needs to interact with the
view for each computation step. The batch mode automates the process of variant
synchronization with the target-focused synchronization view and change propagation
with the source-focused synchronization view.
As we show in Figure 4.14, the developer only needs to either select the variants or files

4.6. Limitations and Optimizations 67

of variants whose changes he wants to propagate using the source-focused synchroniza-
tion view. Besides, the developer needs to select feature expressions or files of feature
expressions whose changes he wants to synchronize into the target variant using the
target-focused synchronization view. Then, the batch mode collects all changes of se-
lected elements and tries to automatically synchronize them. Using the source-focused
synchronization view, changes will be propagated to all valid synchronization targets.
Using the target-focused synchronization view, changes will be merged into the selected
variant. The batch mode merges changes in the order that they occurred. Nevertheless,
if a merge conflict occurs, the compare editor will open and the developer has to solve
the conflict. Afterwards, the batch mode continues the automatic synchronization until
a new merge conflict occurs or all changes are synchronized.

4.5.6 Increasing Code to Feature Mapping

To increase the code to feature mapping, we automatically tag code that was merged
into a variant during the synchronization process. For this purpose, we first activate the
feature-expression context of the change. Then, we perform the synchronization and
merge code into the target variant. The feature-expression context notices that code
of the target variant was changed, identifies the changed code fragment and tags this
code. The tagging algorithm is similar to the algorithm presented in Figure 4.8 and
Figure 4.9. The difference is that VariantSync takes the role of the developer. Instead
of manual execution, VariantSync chooses the feature-expression, activates the context,
performs changes on target files and saves the changes.

4.6 Limitations and Optimizations

In the previous sections, we presented the current state of the prototypical implemen-
tation of VariantSync as an Eclipse plug-in. In this section, we discuss open points
which can improve VariantSync.
As a first optimization point, we could additionally introduce a syntactic merge to make
the synchronization of variants more efficient. In this case, VariantSync would use a
syntactic merge technique to perform the three-way merge on code files. As an advan-
tage, the amount of merge conflicts would decrease (Section 2.3.2 on page 22). However,
syntactic merging requires a special parser for each programming language. We would
combine lexical and syntactic merge by merging non-code files with the lexical merge
technique and merging code files with the syntactic merge technique, if the appropriate
programming-language parser would be implemented.
As a second optimization point, we could enable a code to feature mapping that allows
parallel modifications on the same file by different developers. Currently, tagging inside
feature-expression contexts does not lock the files on which the developer works. We
could either evaluate whether Eclipse locks files in a manner that parallel modifications
are not possible or develop a strategy for parallel tagging.
As a third optimization point, we could evaluate if problems occur when feature-
expression contexts are tracked by a version control system and distributed to different

68 4. Implementation: Variant Synchronization with VariantSync

developers. We assume that each developer can work on the same context in a different
workspace if the XML files containing the context information are available. However,
this use case is not yet tested.
As a fourth optimization point, we regard the user interface. On the one hand, we
could enable the source-focused and target-focused synchronization view to be more
configurable. Currently, both views have the limitation that a developer can neither
select multiple variants in the target-focused synchronization view nor select multiple
feature-expressions in the source-focused synchronization view. Especially for batch
synchronization, this limitation prevents the batch synchronization of several feature
expressions or variants. On the other hand, we could support the selection of a feature-
expression context. Currently, if the developer wants to activate a context, then all
feature expressions of the domain are listed in a drop-down menu. We could determine
which variant is actually opened in the editor. Then, we would be able to provide a
feature-expression selection that only contains feature-expressions implemented by the
variant on which the developer is working. Finally, we could increase the readability
of tagged code by adapting the color concept of FeatureIDE, which also uses colors to
highlight code. We would replace our existing background colors with colors that are
optimized to improve the readability of overlaying code.

4.7 Summary

In this chapter, we presented our implementation of VariantSync. We discussed syn-
chronization platforms as well as our decision for integrated development environments
as best suiting synchronization platforms for our purposes. Furthermore, we discussed
our decisions to implement VariantSync as an Eclipse plug-in and to adopt and extend
functionality of FeatureIDE by introducing domain knowledge into VariantSync. We
presented and discussed details of our design decisions concerning change detection in
variants, decoupled implementation from synchronization, code to feature mapping and
automated variant synchronization. In particular, we presented our solutions to auto-
matically compute valid synchronization targets, to actively propagate changes into
variants, to synchronize changes into variants, to synchronize aggregated changes in
a batch mode and to automatically increase the code to feature mapping during the
synchronization. Finally, we presented possible improvements of VariantSync that were
out of the scope of this thesis.

5. Evaluation

In this chapter, we evaluate the efficiency of variant development using VariantSync.
Moreover, we illustrate how VariantSync supports the migration to a product line. In
Section 5.1, we discuss our research questions which we use to evaluate VariantSync and
explain our measurements. To answer our research questions, we apply VariantSync
to develop five similar variants. For this purpose, we introduce the DesktopSearcher
product line as a target system providing variants as well as their development history
(Section 5.2). Furthermore, we describe how we use the DesktopSearcher product line
to simulate variant development in Section 5.3. In Section 5.4, we present our mea-
surements during variant development concerning the research questions. Finally, we
discuss our results in Section 5.5 and summarize the evaluation in Section 5.6.

5.1 Research Questions

To evaluate VariantSync, we illustrate the applicability and implementation of Variant-
Sync’s core tasks. On the one hand, the evaluation shows how VariantSync makes
the development of few variants more efficient compared to single-system engineering
approaches, like clone-and-own. On the other hand, we evaluate how VariantSync sup-
ports the migration to a product line by establishing a code to feature mapping. As we
introduced in Section 3.3 on page 34, VariantSync’s core tasks are to decrease synchro-
nization effort (1, 2), compute valid synchronization targets (3) and increase code to
feature mapping (4). Referring to these tasks, we want to answer the following research
questions:

• RQ 1: How many changes are automatically merged into valid target variants?

• RQ 2: How many changes are grouped with the same context and synchronized
in the batch mode?

70 5. Evaluation

• RQ 3: How many variants are valid synchronization targets for the change prop-
agation of one context?

• RQ4: How much code is tagged to features during the synchronization?

RQ 1 evaluates the potential for automation. Referring to Figure 3.3 on page 35,
VariantSync automatically merges changes into variants that need to be synchronized
and that can be synchronized without a merge conflict. A reduced amount of merge
conflicts increases the degree of the automated merge and decreases the synchronization
effort for developers. We evaluate how many changes can be automatically merged using
a lexical merge implementation and how many changes need to be manually merged
by a developer due to merge conflicts. Thus, the more conflicts occur, the lower is the
potential for automation.
RQ 2 evaluates the potential for feature-expression contexts and the batch mode.
Changes are collected by applying the tagging inside feature-expression contexts strat-
egy during variant development. Without VariantSync’s batch mode, developers need
to separately propagate each change into target variants. We evaluate how much devel-
opers benefit using VariantSync’s batch synchronization. For this purpose, we compare
the number of consecutive changes that can be synchronized with the batch mode for
multiple feature-expression contexts.
RQ 3 addresses the computation of valid synchronization targets. We evaluate in how
many contexts changes of one context need to be propagated. Referring to Figure 3.3
on page 35, we evaluate the number of variants that need to be synchronized with a
given change. In detail, we compare the number of computed synchronization targets
with the number of synchronization targets that are manually determined and expected
by a developer that is familiar with the domain. If the number of target variants is low,
then the potential for variant synchronization will also be low.
RQ 4 illustrates the potential for supporting the migration to a product line. To
establish a code to feature mapping, VariantSync implements the tagging with feature-
expression contexts strategy. On the one hand, we evaluate the amount of tagged code
during variant development with VariantSync. Besides tagging with feature-expression
contexts, VariantSync also tags code by merging changes into variants. So, on the other
hand, we evaluate whether VariantSync increases the degree of code to feature mapping
during variant synchronization.

5.2 Target System

To perform the evaluation of VariantSync, we need to examine the development of sim-
ilar variants using VariantSync. During the development process, we need to monitor
information to answer our research questions, like determining the number of automated
and manual merges, the number of contexts in which a change needs to be merged or
the number of tagged lines per variant. However, monitoring the development of mul-
tiple variants is a time-consuming task that exceeds the scope of this thesis. Instead,
we perform a simulated case study based on the development history of an existing

5.3. Simulating Variant Development 71

project. Thus, we simulate the development of similar variants over a distinct number
of development steps.
For this purpose, we decide to simulate the development of variants that are generated
by the DesktopSearcher product line. Introduced as a running example in Chapter 2,
DesktopSearcher contains 22 features which allow us to generate 462 different vari-
ants. Figure 2.1 on page 12 shows the feature model at the end of the development
process of DesktopSearcher. Furthermore, DesktopSearcher enables us to simulate the
feature-oriented development of its variants due to two reasons. On the one hand, the
development of DesktopSearcher was tracked with a version control system and provides
a development history of 91 revisions. For a distinct revision, we generate five variants
that differ in various features. Regarding differences between variants of two consecutive
revisions, we are able to reproduce changes on variants to simulate the development.
On the other hand, DesktopSearcher is modularized by applying the concept of feature-
oriented programming using the AHEAD tool suite [Bat05a]. AHEAD defines features
as building blocks of systems which encapsulate fragments of classes. Each feature is
organized in a directory containing artifacts that belong to this feature. If a variant
is generated, then the feature modules will be composed. That means corresponding
files are recursively composed. This modularized architecture supports us to determine
which change belongs to which feature.
So, we simulate variant development by implementing changes into one variant with an
active feature-expression context and synchronizing these changes with variants.

5.3 Simulating Variant Development

Goal of the simulation is first to reproduce each change which is implemented for a
certain revision in one variant and second to propagate these changes into valid syn-
chronization targets. We define a change as a collection of consecutive change operations
concerning one file. For example, the code snippet in Figure 5.4 shows two changes.
First, Line 36 in Revision 4 is replaced with an empty line in Revision 5. Second, Line
45 in Revision 4 is replaced with six new lines in Revision 5. Furthermore, we define the
following change operations : adding files or lines inside files, changing lines inside files,
removing files or lines inside files. While reproducing changes, we apply the tagging
with feature-expression contexts strategy. We simulate the application of VariantSync
from the beginning of the variant development process. For this purpose, we simulate
variant development between Revision 4 to 9. Furthermore, we simulate variant devel-
opment between Revision 57 to 64 to evaluate the application of VariantSync when it
is introduced while variants have already been developed over a period of time. We
select Revisions 57 to 64 because these revisions contain changes on code files and they
are nearly in the middle of the development process of DesktopSearcher. Moreover,
we summarize the development between Revision 58 to 61 and perform the changes as
single development step, because many changes do not affect code files.
Figure 5.1 visualizes how we simulate the variant development with VariantSync. We
perform the following steps:

72 5. Evaluation

Figure 5.1: Simulated Variant Development with the History of an Existing Product
Line

1. Generate variants.

2. Reproduce the development of one variant between two revisions.

3. Propagate changes of step two into valid synchronization targets.

4. Compare the synchronization with the development history.

As the first step, we need to generate variants whose development we want to simulate.
To achieve this, we first inspect revisions of the product line to detect the first revision
containing code that enables us to generate variants. As a result, we choose revision
four. Then, we determine feature configurations for five different variants, as we defined
in Table 5.1. Finally, we use FeatureIDE’s product generator to generate the variants,
as we show in Figure 5.2.
As the second step, we reproduce the development of our variants between Revision 4
and 5. For this purpose, we compute the difference between both revisions using the
compare editor of Subclipse.1 The compare editor shows differences between feature
modules. Between Revision 4 and 5, the compare editor in Figure 5.3 shows changed
and added files that belong to the features Base, GUI, or HTML Parser. Then, we

1Eclipse plug-in providing support for Subversion: http://subclipse.tigris.org/, retrieved on
11.12.2015

5.3. Simulating Variant Development 73

Feature Var1 Var2 Var3 Var4 Var5

Root x x x x x

Base x x x x x

Index x x x x x

Single Directory x x x

Multi Directory x x

User Interface x x x x

GUI x x x x

View x x x x x

Tree View x x

Normal View x x

History x x x x

Query History x x x

Index History x x

GUI Preferences x x x

Commandline x

HTML Parser x x x

TXT Parser x x x

LATEX Parser x x

OS x x x x x

Windows x x x

Linux x

Table 5.1: Feature Configurations of Generated Variants

74 5. Evaluation

Figure 5.2: Generating Variants of an AHEAD Product-Line with FeatureIDE

Figure 5.3: Differences between Revision 4 and 5 of DesktopSearcher

5.3. Simulating Variant Development 75

Figure 5.4: Differences of Variant 3 between Revision 4 and 5

determine the variant which we manually adapt to perform changes that occurred dur-
ing development. We choose the variant which implements the most changed features
according to Figure 5.3. As we see in Table 5.1, Variant 2, Variant 3 and Variant 4
implement all changed features. We randomly decide to choose Variant 3. As the next
step, we compute changes that we need to manually implement. Therefore, we use
the Eclipse compare editor to visualize the differences between Variant 3 of Revision
4 and Variant 3 of Revision 5, as we show in Figure 5.4. In this figure, the classes
ContentHandler, Main, and OptionStorage are changed, whereas the classes ButtonLis-
tener, HitDocument, Indexer, and OptionWindow are added between Revision 4 and
Revision 5. The compare editor lists lines that are added, removed or changed. Finally,
we implement each change between Revision 4 and 5 until this variant has the same
code than a variant that is generated from Revision 5 of DesktopSearcher. While imple-
menting a change, we activate the feature-expression context where the change belongs
to. In Table 5.2, we show change operations that we manually performed to simulate
the development between revisions.
As the third step, we propagate changes of Variant 3 into valid synchronization targets
using source-focused synchronization in the batch mode. In case that a merge conflict
occurs, we manually resolve the conflict with the Eclipse compare editor, as we described
in Section 4.5.5 on page 66.
As the fourth step, we compare the result of the synchronization. We expect that
synchronized variants are equal to variants that are generated in Revision 5. So, we

76 5. Evaluation

Revision/Change Add Files or Lines Remove Files or Lines Change Lines

Rev. 4-5 4 1 3

Rev. 5-6 4 2 2

Rev. 6-7 1 1 0

Rev. 7-8 5 0 3

Rev. 8-9 0 2 0

Rev. 57-58 5 1 2

Rev. 58-61 1 0 3

Rev. 61-62 1 0 2

Rev. 62-63 3 0 3

Rev. 63-64 2 0 1

Table 5.2: Changes to Simulate Variant Development between Revision 4 to 9 and 57
to 64

checkout Revision 5 from the version control system and generate our five variants. Now,
we compare synchronized variants with generated variants, again using the Eclipse com-
pare editor. In case that differences occur, we repeat the steps two to four and adapt
another variant in step two.
As the last step, we collect information about synchronization as well as tagging to
answer our research questions. For this purpose, we count changes that we manually
perform to adapt one variant. Moreover, we count how many changes VariantSync auto-
matically synchronizes to compute the degree of automated merge (RQ 1). Besides, we
count the number of changes of each context that are synchronized using the batch mode
(RQ 2). Furthermore, we count the number of synchronization targets for a context
(RQ 3). Finally, we identify the amount of code that was tagged during the simulated
development and the amount of code that was automatically tagged during the syn-
chronization (RQ 4). For this purpose, we access the XML files which contain context
information, as we introduced in Section 4.4.2 on page 53. Each XML file represents
one feature-expression context. The context consists of variants. Each variant contains
tagged lines, as we visualized in Figure 5.5. To retrieve the number of tagged lines that
belong to a variant, we implemented a small Java application that iterates through each
XML file of VariantSync and collects the number of lines that are tagged to the same
variant through different contexts. As the result, we get the number of tagged lines per
variant.
If all synchronized variants contain the same code than generated variants, we success-
fully simulated the development of five variants between Revision 4 and Revision 5. To
collect adequate information answering our research questions, we repeat the steps two
to four to additionally simulate variant development between Revisions 6, 7, 8, and 9,

5.4. Interpreting Results of Variant Development 77

Figure 5.5: Accessing Tagged Lines inside Feature-Expression Contexts

as we show in Figure 5.1. Furthermore, we repeat the steps two to four to simulate
variant development between Revision 57, 61, 62, 63, and 64.

5.4 Interpreting Results of Variant Development

In Section 5.3, we described our proceeding to collect information to evaluate variant
development with VariantSync. In this section, we present our results to answer our re-
search questions. On the one hand, we compare and interpret results using VariantSync
from the beginning of variant development between Revision 4 to 9. On the other hand,
we evaluate results introducing VariantSync during the development process between
Revision 57 to 64.

How many changes are automatically merged into valid target variants?

While developing variants between Revision 4 to 9 and 57 to 64, 74% of all changes are
automatically merged with VariantSync. We simulate the development between each
revision and only count changes that are propagated during the synchronization. We
do not count initial changes that we manually performed on variants.
The degree of merge automation depends on the amount of merge conflicts. The batch
mode of VariantSync is likely to decrease the number of merge conflicts. On the one
side, the batch mode avoids ordering merge conflicts by propagating changes ordered
by their timestamps. On the other side, VariantSync merges fine-granular changes. For
example, a Java class was changed at two different locations. First, the body of the

78 5. Evaluation

%

20

40

60

80

100

74

au
to

m
at

ed
m

er
ge

26

m
an

ua
l m

er
ge

Figure 5.6: Automated vs. Manual Merge

constructor was changed which would cause a merge conflict during the synchronization
with variant A. Second, getter and setter methods are added at the end of the file.
Merging these methods into variant A does not cause a merge conflict. If both changes
of the class would be merged as one coarse-granular step, then the merge needs to
be manually resolved because the change of the constructor causes a merge conflict.
Thus, the degree of automated merge would be 0%. Instead, VariantSync merges both
changes independently from each other. So, the first step still needs to be manually
resolved. However, the second change is automatically merged. Hence, the degree of
automated merge is 50%.

How many changes are summarized inside a context and synchronized in
the batch mode?

A context collects all changes across variants that are tagged to the feature-expression
of the context. The advantage of the batch mode is the automatic change propagation
into valid synchronization targets. Without the batch mode, the developer needs to
manually propagate each change into target variants. Table 5.3 shows the number of
changes that are aggregated in a feature-expression context and that are automatically
merged in the batch mode. For example, the batch mode automatically synchronizes
five changes of feature GUI between Revision 4 to 5. In average, three changes are
summarized in a context for each revision. So, the batch mode decreases the synchro-
nization effort for the developer.

5.4. Interpreting Results of Variant Development 79

Revision/Feature Base Index User Interface GUI View HTML TXT OS #Contexts

Rev. 4-5 2 - - 5 - 1 - - 3

Rev. 5-6 6 - - - - - 1 - 2

Rev. 6-7 - - - 2 - - - - 2

Rev. 7-8 2 3 - - - 3 - - 3

Rev. 8-9 - - - 2 - - - - 1

Rev. 57-58 1 1 1 1 - - - 1 5

Rev. 58-61 3 - - 3 1 - - - 3

Rev. 61-62 3 - - 3 1 - - - 2

Rev. 62-63 2 2 - 2 - - - - 3

Rev. 63-64 - 2 - 0 - - 0 - 2

Table 5.3: Change Summary in the Batch Mode

How many variants are valid synchronization targets for the change propa-
gation of one context?

Revision/Feature Base Index User Interface GUI View HTML TXT OS

Rev. 4-5 4 - - 3 - 2 - -

Rev. 5-6 4 - - - - - 2 -

Rev. 6-7 - - - 3 - - - -

Rev. 7-8 4 4 - - - 2 - -

Rev. 8-9 - - - 3 - - - -

Rev. 57-58 4 4 4 3 - - - 4

Rev. 58-61 - - - 3 3 - - -

Rev. 61-62 - - - 3 3 - - -

Rev. 62-63 4 4 - 3 - - - -

Rev. 63-64 - 4 - - - - - -

Table 5.4: Synchronization Targets for Change Propagation

VariantSync computes valid synchronization targets. In Table 5.4, we summarize the
number of synchronization targets for the change propagation. A variant is a valid
synchronization target if it implement the same feature expression that the change is
tagged to. Furthermore, if a file was changed, a valid synchronization target needs
to contain a file with the same name than the changed file. For example, Variant 2
to Variant 5 implement feature GUI. Propagating a change tagged to feature GUI

80 5. Evaluation

requires a synchronization with four valid synchronization targets. Table 5.4 shows
that VariantSync continuously computes correct synchronization target for changes in
different revisions. Thus, VariantSync reduces the effort for developers to manually
select synchronization targets.

How much code is tagged to features during the synchronization?

4 5 6 7 8 9
0

20

40

60

80

100

Revisions

A
m

ou
n
t

of
T

ag
ge

d
C

o
d
e

in
%

Figure 5.7: Tagged Code in Total (Rev.
4-9)

57 58 61 62 63 64
0

20

40

60

80

100

Revisions

A
m

ou
n
t

of
T

ag
ge

d
C

o
d
e

in
%

Figure 5.8: Tagged Code in Total (Rev.
57-64)

4 5 6 7 8 9
0

20

40

60

80

100

Revisions

A
m

ou
n
t

of
T

ag
ge

d
C

o
d
e

in
%

V 1
V 2
V 3
V 4
V 5

Figure 5.9: Tagged Code per Variant
(Rev. 4-9)

57 58 61 62 63 64
0

20

40

60

80

100

Revisions

A
m

ou
n
t

of
T

ag
ge

d
C

o
d
e

in
% V 1

V 2
V 3
V 4
V 5

Figure 5.10: Tagged Code per Variant
(Rev. 57-64)

To evaluate the degree of tagged code during variant development, we first compare
the degree of tagged code when using VariantSync at the beginning of the variant de-
velopment process and when introducing VariantSync while variants have already been
developed over a period of time. Second, we compare how much code is tagged while
developing with an active feature-expression context and how much code is automati-
cally tagged during the synchronization.

5.4. Interpreting Results of Variant Development 81

In total, the degree of tagged code increases during variant development. Using Variant-
Sync from the beginning of the variant development process, the degree of tagged code
increases from 0% at Revision 4 to 89% at Revision 9, as we visualized in Figure 5.7.
Between the first two revisions (4 to 5), the degree enormously grows. The reason is
that typically many files are added at the begin of the development process and Variant-
Sync directly tags the code of added files. In the following, the degree gradually grows
from 61% to 89% between Revision 5 to 9. In contrast, the degree of tagged code only
increases from 0% to 44% between Revision 57 and 64, as we see in Figure 5.7. Similar
to Revision 5 to 9, the degree of tagged code also gradually grows, except between
Revision 58 to 61. In this period, three files are added to Variant 5 and propagated
into other variants.
Moreover, the degree of tagged code is similar between the variants because most
changes occurred on feature expressions Base and GUI. Base is implemented by all
variants, GUI is implemented by variants two to five. Between Revision 4 to 6, the
degree of tagged code only differs slightly, as we show in Figure 5.9. The reason is that
13 of 15 changes occur on the feature expressions Base and GUI. Therefore, changed
code of Base is synchronized with all variants and changed code of GUI is synchronized
with all variants except Variant 1. In the following development step, the amount of
tagged code differs between Variant 1 and Variant 3 because only two changes on fea-
ture expression GUI occurred. Variant 1 is not a valid synchronization target because
it does not implement feature expression GUI. The degree of tagged code minimally
decreases because two changes in the classes OptionStorage and OptionWindow needed
to be manually implemented. Both changes replace existing code with less lines of
code. So, the amount of tagged code decreases. However, Variant 3 was manually
adapted to simulate variant development between Revision 6 to 7. One of the changes
causes a merge conflict during the change propagation into variants two, four and five.
During manual conflict resolution, tagged code was replaced with changed code which
only leads to a small increase of tagged code. Furthermore, the amount of tagged code
between Revision 8 to 9 stagnates for Variant 1 because only changes occurred that
are tagged to the feature GUI. Due to the fact that Variant 1 does not implement
feature GUI, it is not a valid synchronization target and does not receive changed code.
Between Revision 57 to 64, the development of the degree of tagged code per variant is
similar to Revision 4 to 9, as we see in Figure 5.10. The variants have a similar but not
identical degree of tagged code because they implement a different selection of features.
The difference is the lower degree of tagged code in comparison with Revision 4 to 9.
Finally, Figure 5.11 shows the relation of automatically to manually tagged code. In
average, three-quarter of tagged code was automatically tagged in our five variants.
The reason is that we manually adapt one of five variants to simulate variant develop-
ment. The following change propagations enable an automatic tagging. Most changes
belong to features that are implemented by almost all variants. The features Base,
Index, User Interface, and OS are implemented by all variants and the features GUI
and View are implemented by four of five variants. Thus, a change that occurred in
feature GUI will be propagated into three valid target variants. After merging changed
code into a target variant, this code will be tagged. In case of feature GUI, the degree

82 5. Evaluation

of automated to manual tagging is exactly 75%. Furthermore, the degree describes 80%
automation when propagating changes of features Base, Indexer, User Interface, or OS.
However, rarely implemented features like TXT or HTML will be synchronized in less
variants. So, the degree of automated tagging decreases. In case of feature TXT, the
degree of automated tagging would be nearly 50% because feature TXT is implemented
in two variants. In one variant, code is changed and tagged by manual tagging. Then,
the change will be merged into the target variant. However, on an average, the degree of
automated tagging is nearly 75% for our five variants and their feature configurations.
So, the more variants exist, the higher is the potential for automation.
To summarize, the degree of tagged code grows gradually in most development steps.
In some cases, the degree stagnates or minimally decreases between two development
steps if tagged code is replaced with changed code or tagged code is removed during
the synchronization. Using VariantSync at the beginning of the development process
leads to a high degree of tagged code, whereas introducing VariantSync while variants
have already been developed over a period of time leads to a lower amount of tagged
code. Hence, tagging code during the synchronization strongly increases the degree of
tagged code.

5.5 Discussion

We showed that VariantSync can reduce the synchronization effort for variant develop-
ment. Furthermore, we illustrated that VariantSync accumulates domain knowledge to
support the migration to a product line. In the following, we discuss the results of the
evaluation. We start by reflecting the efficiency of variant development. Moreover, we
discuss the amount of code tagging when using VariantSync from the beginning of the
development process and when VariantSync is introduced while variants have already
been developed over a period of time.

Efficiency of Synchronization

We define the efficiency of variant synchronization by evaluating our research questions
one to three. Regarding research question one, VariantSync merges nearly 75% of all
changes automatically, as we show in Figure 5.6. Referring to research question two,
three changes are summarized in a context and synchronized in the batch mode in
average while developing variants between two revisions. Concerning research ques-
tion three, VariantSync correctly computes valid synchronization targets to propagate
changes of a context. In regard of these facts, VariantSync makes variant develop-
ment more efficient than a manual performed variant synchronization with tools from
single-system engineering, for example using a version control system with the branch-
per-product strategy (Section 2.2.3 on page 20).
Nevertheless, we can increase the degree of the automated merge by adopting or im-
plementing another merge technique. Currently, VariantSync performs a lexical merge.
The advantage of this merge technique is its widespread area of application. This merge
technique can be applied on each text file. However, a lexical merge only compares sin-
gle text lines without information about their syntax and semantic. Using syntactic and

5.6. Summary 83

semantic merge techniques, the degree of the automated merge would increase because
typical lexical merge conflicts would be avoided, for example changed line positions or
a changed code formatting. As a drawback, syntactic and semantic merge techniques
cannot be applied on each kind of text files. For each type (e.g., Java files or C++
files), a separated parser needs to be implemented.

Amount of Tagging

We classify code tagging into two categories. First, manual tagging describes code that
is tagged because a developer (manually) changed code while working with an active
feature-expression context. Second, automatic tagging comprises code that is tagged
because changed code fragments are merged into synchronization targets. As we show
in Figure 5.11, approximately 25% of the tagged code was manually and 75% was
automatically tagged. So, we can conclude that the amount of manually tagged code
rises during the synchronization. Automated tagging increases the degree of tagged
code dependent on the number of valid synchronization targets. The more variants are
synchronized with tagged code, the more code is absolutely tagged.
Manual tagging increases the amount of tagged code dependent on the kind of changes.
If a developer adds a file, then all lines of this file are tagged. Adding additional lines
inside a file also increases the amount of tagged code. However, the amount of tagged
code decreases when removing tagged lines inside a file or removing files that contain
tagged code.
In conclusion, the more files or lines inside files are added, the more code is manually
tagged. During variant development, most files are initially created or added at the
beginning of the development process. Hence, if VariantSync is used from the beginning,
then the amount of manually tagged code significantly increases. Propagating tagged
changes to target variants increases the amount of tagged code. As a result, 89% of all
variant code was tagged while simulating the development of five variants for the first
five revisions, as we see in Figure 5.9. Indeed, when VariantSync is introduced while
variants have already been developed over a period of time, then more development steps
are necessary to reach the same degree of tagged code. As we show in Figure 5.10, the
degree of tagged code during the development between Revision 57 to 64 is half as the
degree from the beginning of development in Figure 5.9. So, the earlier VariantSync is
introduced in the development process, the more the amount of tagging rises.

5.6 Summary

In this chapter, we evaluated variant development with VariantSync on five similar
variants. At first, we pointed out research questions that we wanted to answer with
this evaluation. Then, we described the DesktopSearcher product line as the target
system on which we performed the evaluation. Moreover, we introduced a concept to
simulate variant development based on the DesktopSearcher product line. We illustrate
the development history of DesktopSearcher and manually implemented changes on
one selected variant between different revisions. Then, we propagated these changes to

84 5. Evaluation

valid synchronization targets. Our measurements show that nearly 75% of all changes
can be automatically synchronized. Furthermore, the code to feature tagging increases.
Introducing VariantSync at the beginning of the development process leads to a degree
of 89% tagged code. Finally, we discussed our measurements in regard to the research
questions.

5.6. Summary 85

Lines

1000

2000

3000

4000

5000

6000

7000

8000

9000

6106

nu
m

be
r of

lin
es

re
v.

4-
9

5320

ta
gg

ed
lin

es
re

v.
4-

9

4034

au
to

m
at

ica
lly

ta
gg

ed
lin

es
re

v.
4-

9

1286

m
an

ua
lly

ta
gg

ed
lin

es
re

v.
4-

9

8640

nu
m

be
r of

lin
es

re
v.

57
-6

4

3871

ta
gg

ed
lin

es
re

v.
57

-6
4

2667

au
to

m
at

ica
lly

ta
gg

ed
lin

es
re

v.
57

-6
4

1204

m
an

ua
lly

ta
gg

ed
lin

es
re

v.
57

-6
4

Figure 5.11: Automated Tagging vs. Manual Tagging

86 5. Evaluation

6. Related Work

Research on variant development is an active field that addresses works covering variant
development with clone-and-own as well as variant development with a product line.
In this chapter, we present several publications that are related to VariantSync. We
first refer to a work that is the base of our VariantSync concept. Then, we present
related work that focuses on clone-and-own development without domain knowledge in
terms of features. In the following, we examine approaches that introduce the concept
of feature modeling to automate parts of the variant development process. We fur-
ther present a work that describes an approach to minimize the risks of product-line
transitions. Finally, we refer to a publication that supports variant development over
multiple product lines.

Our VariantSync concept is built upon a prior version of VariantSync. In 2012,
Luo [Luo12] described a first version of VariantSync in his master’s thesis. This ap-
proach logs changes inside variants on a fine granularity during variant development.
After saving a file during development process, the approach computes the differences
between the two latest version of the file with a lexical difference algorithm, where each
difference is treated as a separate change. Then, the approach merges the changes with
a lexical three-way merge into target variants. The computation of possible synchro-
nization targets is semi-automated. A developer needs to create a feature model for
all variants and derive a feature configuration to describe the variability of each vari-
ant. To propagate a change, the developer manually selects the feature that belongs to
the change. If the feature configuration contains the selected feature, then the corre-
sponding variant is a valid synchronization target. In the following, the developer can
select these synchronization targets and manually start the synchronization. In case of
a merge conflict, the conflict needs to be manually resolved. The approach is prototyp-
ically implemented as an Eclipse plug-in that provides a view for change propagation.
In our thesis, we extend this first concept of VariantSync. We introduce tagging with
feature-expression contexts, present a variant synchronization from two different point

88 6. Related Work

of views, automate the computation of valid synchronization targets and provide a batch
mode to automate change propagation from a source-focused and target-focused point
of view. We also implement VariantSync as an Eclipse plug-in that provides two views
for source-focused and target-focused synchronization and implements the tagging with
feature-expression contexts strategy.

With VariantSync, we presented a concept that makes domain knowledge explicit in
terms of features to automate the synchronization of variants. In contrast, Schmor-
leiz [Sch15] presents an annotation-centric approach to similarity management that syn-
chronizes code fragments between variants without using domain knowledge in terms of
features. First, this approach analyzes the history of a software repository by traversing
commits and detecting similarity evolutions, e.g., the approach detects whether code
fragments of variants are always equal, converge to equal, diverge from equal, or are
non-equal. Then, the approach annotates code fragments to express how they need to
be further maintained. Goal is to perform change propagation to avoid unintentional
divergence between variants. For this purpose, the annotation-centric approach syn-
chronizes code fragments that have diverged over time but should be equal. Dependent
on the kind of annotation, the approach automatically propagates annotated changes
between code fragments or requires manual work to perform change propagation. In
comparison to the annotation-centric approach, VariantSync also focuses on change
propagation between variants, but on a different abstraction level. We map changes
to feature expressions to automatically compute valid synchronization targets. More-
over, the annotation-centric approach uses version control systems as a synchronization
platform and supports variant development with clone-and-own by synchronizing code
changes between code clones on a low abstraction level. In contrast, VariantSync uses
an integrated development environment as a synchronization platform and enables vari-
ant synchronization from different point of views. Furthermore, VariantSync establishes
a code to feature mapping that reduces the gap to variant development with product
lines. However, it is also possible to apply VariantSync with version control systems.

In Section 2.2.3 on page 20, we describe a possibility to develop variants in branches of
version control systems. Moreover, we introduce version control systems as a possible
synchronization platform for VariantSync in Section 4.1.1 on page 42. To support vari-
ant development in branches of version control systems, Rubin et al. [RKBC12] present
a framework to facilitate the reuse of features between variants. The framework treats
features as reuse units and detects inconsistencies in feature implementations. Further-
more, the framework detects relationships between features and supports developers to
copy or delete features in branches. VariantSync also has the goal to avoid inconsis-
tencies between variants, but it does not support the reuse of feature implementations.
Instead, VariantSync synchronizes code changes between feature-expression contexts of
different variants to prevent duplicate developments.

Similar to the goals of VariantSync, Fischer et al. [FLLHE15] introduce ECCO (Extrac-
tion and Composition for Clone-and-Own), an approach to enhance clone-and-own with

89

systematic reuse to support variant development. ECCO’s goal is to reduce the effort
for variant development and maintenance, especially for adding new variants during
development. For this purpose, ECCO automates the clone-and-own approach with ex-
traction and composition. The extraction step traces associations between features and
artifacts. Based on a set of selected features, the composition step composes variants
from artifacts in selected traces. For example, if a developer selects a set of features,
then ECCO will detect appropriate reusable software artifacts and will indicate which
artifacts need to be manually adapted. VariantSync also has the goal to support the
development of variants which could increase over time. In contrast to reusable artifacts
of ECCO, VariantSync focuses on change synchronization between variants that can
contain duplicated code fragments. VariantSync does not require an extraction process
to trace features and artifacts. Instead, VariantSync is a light-weight solution that can
be introduced at arbitrary points in the variant development process and only slightly
changes the clone-and-own development process.

To reduce the risks of a product-line transition, Antkiewicz et al. [AJB+14] present
the idea of a virtual platform that covers different clone-and-own strategies, from ad-
hoc clone-and-own to product-line engineering with a fully-integrated platform. They
introduce several governance level which guide the transition to a product line and
provide incremental benefits at each level. Starting with ad-hoc clone-and-own on the
first level, the virtual platform incrementally introduces domain knowledge and estab-
lishes a code to feature tracing in clone-and-own development. For example, the first
governance level records provenance information about variants and cloned assets to
coordinate the change propagation. The second level starts to describe functionality of
variants in terms of features, whereas the third level introduces feature configurations
to derive variants by selecting subsets of features. Furthermore, the fourth level uses a
feature model to cover all variants and features. To create a new project, developers use
an existing variant and fetch needed features from other variants when the feature model
and its constraints allow the feature combination. The fifth and sixth level establish
a configurable platform which enables developers to share assets among the platform
and automatically derive new variants by configuring the platform. VariantSync can
be classified into governance level four because it focuses on a variant synchronization
which is oriented towards the clone-and-own strategy with a feature model. To com-
pute valid synchronization targets, the VariantSync concept requires a list of concerns
of each variant. For this purpose, the VariantSync prototype uses a feature model to
cover all variants and implemented features. It further derives feature configurations
that represent the functionality of each variant.

To support variant development over multiple product lines, Lettner et al. [LG15]
present a feature feed approach that has the aim to improve developer awareness in
software ecosystem evolution. A software ecosystem includes the development of multi-
ple product lines in multiple organizations, where feature feeds propagate knowledge of
developers about feature implementations. Similar to our implementation of Variant-
Sync, the approach is based on feature modeling. The approach automatically tracks

90 6. Related Work

changes on features and publishes these information to subscribed developers. In this
context, a developer can occupy different roles. For example, a domain engineer is re-
sponsible for changes on the feature model and an application engineer is responsible
for changes in the feature implementation. During development, each role is informed
about changes at different levels of granularity. Using VariantSync, developers also
could occupy different roles. On the one side, a developer can be responsible to imple-
ment a variant. On the other side, a developer can be responsible to propagate changes
and synchronize variants. For example, if a developer is an expert on one variant, then
he can use the target-focused synchronization to update his variant with changes that
occurred in other variants.

7. Conclusion

To overcome the increasing demand for tailored software systems, industrial software
development often uses clone-and-own to build a new variant by copying and adapting
an existing variant. Admittedly, this proceeding requires less up-front investments but
the maintenance effort rapidly grows with an increasing number of variants. However,
product lines have high up-front investments which make the development of few vari-
ants unprofitable. To reduce this gap, we presented VariantSync, a light-weight and
language-agnostic concept to enhance variant development with clone-and-own and sup-
port the migration to a product line.
On the one hand, VariantSync makes variant development more efficient by automat-
ing the synchronization of variants. For this purpose, VariantSync detects and collects
changes that occur during variant development and synchronizes these changes with
appropriate variants. Our first contribution is to automate the identification of syn-
chronization targets. For this purpose, we make domain knowledge explicit by mapping
code to features. We introduce a feature-expression context that automates the code to
feature tagging during variant development. If a software developer activates a feature-
expression context, then VariantSync monitors all changes on variants and tags changed
code fragments to a feature expression. Our second contribution is to perform a vari-
ant synchronization from different points of view. We decouple implementation from
synchronization and provide a synchronization from a target-focused as well as source-
focused point of view. The target-focused synchronization focuses on synchronizing
changes with a single variant. One variant is synchronized with all relevant changes
that occurred in other variants. In contrast, the source-focused synchronization focuses
on actively propagating changes of one variant into other variants. A batch mode au-
tomates the synchronization from a target-focused or source-focused point of view.
On the other hand, VariantSync supports the light-weight transition to a product line.
For this purpose, our third contribution is to accumulate domain knowledge. Using
feature-expression contexts, VariantSync establishes a code to feature mapping. While
synchronizing variants, we automatically increase the degree of tagged code. If a change

92 7. Conclusion

is propagated to valid synchronization targets, then the synchronized code will be tagged
to the same feature expression that the change is tagged to.
Moreover, we showed that VariantSync is applicable. For this purpose, we discussed
version control systems and integrated development environments as two possible syn-
chronization platforms. Due to the fact that integrated development environments
support the visualization of code tagging with less effort and to be in line with a prior
prototype of VariantSync [Luo12], we implemented VariantSync as an Eclipse plug-in.
To represent domain knowledge, we adapted functions of FeatureIDE to create and
maintain feature models and feature configurations. The VariantSync plug-in realizes
the application of feature-expression contexts and provides two Eclipse views to perform
target-focused synchronization and source-focused synchronization. To ensure that the
synchronization is language-agnostic, VariantSync uses a lexical merge technique to
merge code fragments into variants.
Finally, we evaluated our implementation of VariantSync with a simulated case study
by covering the development of five variants over a distinct number of development
steps. To achieve this, we generated variants with the DesktopSearcher product line
and used the development history of DesktopSearcher to simulate variant development
with VariantSync. We found out that VariantSync automatically synchronizes 75%
of all changes between variants and continuously increases the degree of code to fea-
ture tagging. While simulating variant development between the first five revisions of
DesktopSearcher, VariantSync nearly tagged 89% of all variant code. Even if Variant-
Sync is not used from the beginning and is only introduced during the development
process, the amount of tagged code grows from 0% in Revision 57 to 44% in Revision
64.

8. Future Work

In this chapter, we describe several topics that can extend our contributions and evalu-
ation. On the one hand, we refer to variant development and discuss how VariantSync
could support developers in adding new variants. On the other hand, we propose sug-
gestions to extend the code to feature tagging. Finally, we suggest how to extend our
evaluation of VariantSync.

Adding New Variants

During variant development, it is a realistic scenario that a new variant needs to be
initially created and maintained during the further development process. Currently,
VariantSync supports the maintenance of new variants by synchronizing changes with
these variants. VariantSync actually does not support the creation of new variants.
Using clone-and-own, a new variant is typically built by first copying an existing vari-
ant and then adapting it for specific needs. If variants are developed with Variant-
Sync, then variant code is tagged to feature expressions. Using this domain knowledge,
VariantSync could support variant creation. First, a developer needs to specify a fea-
ture configuration for the new variant. Second, VariantSync could determine the variant
with the nearest feature configuration and copies this variant inclusive the existing code
to feature tagging. Third, VariantSync could either remove code that is tagged to fea-
ture expressions which are not implemented by the new variant or notify the developer
that this code needs to be removed. Fourth, VariantSync could propose code of other
variants that is tagged to the same feature expressions than the new variant to support
the development of the new variant.

Combining Manual Tagging and Tagging with Feature-Expression Contexts

In Section 3.2.2 on page 30, we discussed manual tagging and tagging with feature-
expression contexts to trace code fragments to features. We made the conclusion that
the combination of both tagging strategies combines their advantages and minimizes

94 8. Future Work

their disadvantages. With manual tagging, the developer is able to decide which code he
wants to tag. Nevertheless, the developer needs to manually tag each code fragment that
belongs to a feature expression. To overcome this tagging effort, tagging with feature-
expression contexts automates the tagging process. However, once performed, tagging
can be hardly changed. Our prototypical implementation of VariantSync realizes the
tagging with feature-expression contexts strategy. As a future work, we could show
that the combination of both tagging strategies is applicable (or not). For this purpose,
we could extend our VariantSync prototype to additionally provide a manual code to
feature tagging. For example, we could extend Eclipse’s code editor to tag selected
code to a chosen feature expression.

Synchronizing Code to Feature Tagging

To increase the code to feature tagging, VariantSync actually tags code that was in-
serted into a variant during synchronization. As a consequence, the original code of
this variant is replaced with the inserted code. Simultaneously, an existing tagging is
also overwritten by the tagging of the inserted code. However, overwriting the tagging
could lead to an erroneous tagging. For example, code fragment A is tagged to feature
expression F1 and code fragment B is tagged to feature expression F2. If parts of code
fragment A are overwritten with code fragment B during synchronization, then the
tagging is also overwritten and F1 is replaced by F2, even if parts of code fragment A
still need to be tagged to feature expression F1. As a future work, VariantSync could
avoid erroneous tagging by synchronizing tagging information instead of overwriting
them.

Extending the Migration to a Product Line

VariantSync supports the transition to a product line by establishing a code to feature
mapping. In the next step, we could extend VariantSync to collaborate with existing
tools for product-line migration. For example, we could evaluate whether Variant-
Sync can be migrated to an implementation of delta-oriented programming, e.g., with
DeltaJ [KHS+14], a prototypical implementation of delta-oriented programming for
Java. Delta-oriented programming is an approach to implement a product line consist-
ing of a core module and a set of delta modules. A core module represents a variant and
delta modules define changes that are applied to the core module to implement further
variants, e.g., by adding, changing or removing code or files [SBB+10]. VariantSync
monitors changes on variants which could support the setup of delta modules.

Evaluating VariantSync with an Industrial Case Study

In this thesis, we evaluated VariantSync with a case study that simulated the develop-
ment of variants which were generated by a product line. To evaluate VariantSync’s
capability, we could perform a long-term evaluation where VariantSync is used to sup-
port the variant development of an industrial software system. In this case study, we
could evaluate how different developers collaborate when using VariantSync, especially

95

while propagating changes into target variants with the source-focused synchronization
or while synchronizing single variants with the target-focused synchronization. Fur-
thermore, we could evaluate our research questions (Section 5.1 on page 69) in a long
term application. At least, we could measure how regularly developers synchronize
changes and prove whether a regularly change propagation decreases the amount of
merge conflicts.

96 8. Future Work

Bibliography

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer
Publishing Company, 2013. (cited on Page ix, 1, 2, 3, 8, 9, 10, 12, 13, 14, 16, 17,

19, 20, 21, 26, and 30)

[AJB+14] Michal Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki,
Thomas Schmorleiz, Ralf Lämmel, Stefan Stanciulescu, Andrzej Wasowski,
and Ina Schaefer. Flexible product line engineering with a virtual plat-
form. In Companion Proceedings of the 36th International Conference on
Software Engineering, pages 532–535. ACM, 2014. (cited on Page 19 and 89)

[ALB+07] Sven Apel, Christian Lengauer, Don Batory, Bernhard Möller, and Chris-
tian Kästner. An Algebra for Feature-Oriented Software Development.
Technical Report MIP-0706, University of Passau, 2007. (cited on Page 31)

[ALB+11] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Chris-
tian Kästner. Semistructured merge: rethinking merge in revision control
systems. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, pages
190–200. ACM, 2011. (cited on Page 19)

[ALHM+11] Mauricio Alférez, Roberto E. Lopez-Herrejon, Ana Moreira, Vasco Amaral,
and Alexander Egyed. Supporting Consistency Checking between Features
and Software Product Line Use Scenarios. In Top Productivity through
Software Reuse. 12th International Conference on Software Reuse, pages
20–35. Springer Berlin Heidelberg, 2011. (cited on Page 13)

[AM14] RaFat Ahmad Al-MsieDeen. Reverse Engineering Feature Models From
Software Variants to Build Software Product Lines. PhD thesis, University
of Montpellier, France, 2014. (cited on Page 2 and 28)

[Bab15] Arne Babenhauserheide. Mercurial scm. https://www.mercurial-scm.org/,
2015. [Online; accessed 30-November-2015]. (cited on Page 42)

98 Bibliography

[Bat05a] Don Batory. A tutorial on feature oriented programming and the AHEAD
tool suite. In Proceedings of the 2005 International Conference on Gen-
erative and Transformational Techniques in Software Engineering, pages
3–35. Springer-Verlag Berlin, 2005. (cited on Page 71)

[Bat05b] Don Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the 9th international conference on Software Product Lines,
pages 7–20. Springer-Verlag Berlin, 2005. (cited on Page 12 and 13)

[BCD+00] Len Bass, Paul C. Clements, Patrick Donohoe, John McGregor, and
Linda M. Northrop. Fourth Product Line Practice Workshop Report.
Technical Report CMU/SEI-2000-TR-002, Software Engineering Institute,
2000. (cited on Page 27)

[Ber90] Brian Berliner. CVS II: Parallelizing Software Development. In Proceedings
of the Winter 1990 USENIX Conference, pages 341–352. Prisma, Inc.,
1990. (cited on Page 20)

[BKPS04] Günter Böckle, Peter Knauber, Klaus Pohl, and Klaus Schmid. Software
Produktlinien: Methoden, Einführung und Praxis. dpunkt.verlag, 2004.
(cited on Page 1 and 2)

[Bre04] Tom Bret. Parallel Development Strategies for Software Configuration
Management. Methods and Tools, 12(2):2–11, 2004. (cited on Page 3

and 20)

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley, 2000.
(cited on Page 9 and 16)

[Cha15] Scott Chacon. Git. https://git-scm.com/, 2015. [Online; accessed 30-
November-2015]. (cited on Page 42)

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. Addison-Wesley Longman Publishing Co., Inc, 2001. (cited

on Page 8)

[CS14] Scott Chacon and Ben Straub. Pro Git. Apress, 2014. (cited on Page 42)

[CSFP08] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Ver-
sion Control with Subversion. O’Reilly Media, 2008. (cited on Page 42)

[Cyb96] Jacob L. Cybulski. Introduction to Software Reuse. Technical Report
Technical Report TR 96/4, The University of Melbourne, 1996. (cited on

Page 9)

Bibliography 99

[DB07] Mark Dalgarno and Danilo Beuche. Variant Management. In 3rd British
Computer Society Configuration Management Specialist Group Confer-
ence, 2007. (cited on Page 18)

[DRB+13] Yael Dubinski, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Mar-
tin Becker, and Krzysztof Czarnecki. An Exploratory Study of Cloning in
Industrial Software Product Lines. In Proceedings of the European Confer-
ence on Software Maintenance and Reengineering (CSMR), pages 25–34.
IEEE Computer Society, March 2013. (cited on Page 3, 18, and 19)

[EEM10] Neil A. Ernst, Steve M. Easterbrook, and John Mylopoulos. Code
forking in open-source software: a requirements perspective. CoRR,
abs/1004.2889, 2010. (cited on Page 18)

[FKF+10] Janet Feigenspan, Christian Kästner, Mathias Frisch, Raimund Dachselt,
and Sven Apel. Visual Support for Understanding Product Lines. In
Proceedings of the International Conference on Program Comprehension.
IEEE CS, 2010. (cited on Page 56)

[FLLHE15] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexan-
der Egyed. The ECCO Tool: Extraction and Composition for Clone-and-
Own. In Proceedings of the 37th International Conference on Software
Engineering, pages 665–668. IEEE Press, 2015. (cited on Page 88)

[Fou15] The Apache Software Foundation. Apache subversion.
https://subversion.apache.org/, 2015. [Online; accessed 30-November-
2015]. (cited on Page 42)

[Fow00] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000. (cited on Page 3)

[Fre83] Peter Freeman. Reusable software engineering: Concepts and research
directions. In ITT Proceedings of the Workshop on Reusability in Pro-
gramming, pages 129–137, 1983. (cited on Page 9)

[JKB08] Mikolas Janota, Joseph Kiniry, and Goetz Botterweck. Formal Methods
in Software Product Lines: Concepts, Survey, and Guidelines. Technical
Report Lero-TR-SPL-2008-02, The Irish Software Engineering Research
Centre, 2008. (cited on Page 28)

[Käs10] Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors
2.0. PhD thesis, University of Magdeburg, Germany, 2010. (cited on Page 1,

8, 15, 16, 31, 44, and 55)

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,
1990. (cited on Page 8, 9, and 12)

100 Bibliography

[KD11] Rob Kitchin and Marting Dodge. Code/Space: software and everyday life.
Massachussets Institute of Technology, 2011. (cited on Page 1)

[KG08] Cory J. Kapser and Michael W. Godfrey. ”Cloning considered harmful”
considered harmful: patterns of cloning in software. Journal of Empirical
Software Engineering, 13(6):645–692, 2008. (cited on Page 3 and 19)

[KHS+14] Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze,
Lorenzo Bettini, and Ferruccio Damiani. DeltaJ 1.5: delta-oriented pro-
gramming for Java 1.5. In Proceedings of the 2014 International Confer-
ence on Principles and Practices of Programming on the Java platform:
Virtual machines, Languages, and Tools, pages 63–74. ACM, 2014. (cited

on Page 94)

[Kla14] Benjamin Klatt. Consolidation of Customized Product Copies into Soft-
ware Product Lines. PhD thesis, Karlsruher Institut für Technologie, Ger-
many, 2014. (cited on Page ix and 18)

[Kru06] Charles W. Krueger. The emerging practice of software product line de-
velopment. Mil Tech Trends, pages 1–3, 2006. (cited on Page 8 and 28)

[LG15] Daniela Lettner and Paul Grünbacher. Using Feature Feeds to Improve
Developer Awareness in Software Ecosystem Evolution. In Proceedings of
the Ninth International Workshop on Variability Modelling of Software-
intensive Systems, page 11. ACM, 2015. (cited on Page 89)

[LLMZ06] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. Jour-
nal IEEE Transactions on Software Engineering, 32(3):176–192, 2006.
(cited on Page 3)

[Luo12] Lei Luo. Synchronize Software Variants with VariantSync. Master’s thesis,
University of Magdeburg, Germany, December 2012. (cited on Page 3, 4, 7,

25, 46, 63, 64, 87, and 92)

[LWN07] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. Evaluating
the harmfulness of cloning: a change based experiment. In Proceedings
of the Fourth International Workshop on Mining Software Repositories,
pages 18–22. IEEE Computer Society, 2007. (cited on Page 18)

[Men02] Tom Mens. A State-of-the-Art Survey on Software Merging. IEEE Trans-
actions on Software Engineering, 28(5):449–462, 2002. (cited on Page 19,

21, 22, 23, and 36)

[MNJP02] John D. McGregor, Linda M. Northrop, Salah Jarrad, and Klaus Pohl. Ini-
tiating Software Product Lines. IEEE Software, 19(4):24–27, 2002. (cited

on Page ix, 2, 25, and 28)

Bibliography 101

[Mye86] Eugene W. Myers. An O(ND) Difference Algorithm and its Variations.
Algorithmica, 1(1):251–266, 1986. (cited on Page 48)

[New82] P. S. Newman. Towards An Integrated Development Environment. IBM
Systems Journal, 21(1):81–107, 1982. (cited on Page 43 and 44)

[O’S09] Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media, 2009.
(cited on Page 42)

[PBvdL10] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer
Publishing Company, 2010. (cited on Page 2, 4, 7, 27, 28, and 30)

[PD89] Ruben Prieto-Diaz. Classification of reusable modules. In Software
reusability: vol. 1, concepts and models, pages 99–123. ACM, 1989. (cited

on Page 9)

[PD90] Ruben Prieto-Diaz. Domain analysis: an introduction. ACM SIGSOFT
Software Engineering Notes, 15(2):47–54, 1990. (cited on Page 8)

[RKBC12] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik.
Managing forked product variants. In Proceedings of the 16th International
Software Product Line Conference, pages 156–160. ACM, 2012. (cited on

Page 18, 19, and 88)

[SAA+00] Guus T. Schreiber, Hans Akkermans, Anjo Anjewierden, Robert De Hoog,
Nigel R. Shadbolt, Walter Van de Velde, and B. J. Wielinga. Knowledge
Engineering and Management: The CommonKADS Methodology. MIT
Press, 2000. (cited on Page 9)

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. Delta-oriented programming of software product lines. In Jan
Bosch and Jaejoon Lee, editors, Software Product Lines: Going Beyond,
volume 6287 of Lecture Notes in Computer Science, pages 77–91. Springer
Berlin Heidelberg, 2010. (cited on Page 94)

[Sch15] Thomas Schmorleiz. An Annotation-centric Approach to Similarity Man-
agement. Master’s thesis, University of Koblenz and Landau, Germany,
February 2015. (cited on Page 3 and 88)

[SLB+10] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzystof Czarnecki. The Variability Model of The Linux Kernel. In
Proceedings of the International Workshop on Variability Modelling of
Software-intensive Systems (VaMos), pages 45–51. University of Duisburg-
Essen, January 2010. (cited on Page 1)

102 Bibliography

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A comparison of de-
cision modeling approaches in product lines. In Proceedings of the 5th
Workshop on Variability Modeling of Software-Intensive Systems, pages
119–126. ACM Press, 2011. (cited on Page 30)

[Str12] Bjarne Stroustrup. Software Development for Infrastructure. Computer,
45(1):47–58, 2012. (cited on Page 1)

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of vari-
ability realization techniques: Research Articles. Software - Practice Ex-
perience, 35(8):705–754, 2005. (cited on Page 14)

[Thü15] Thomas Thüm. Product-Line Specification and Verification with Feature-
Oriented Contracts. PhD thesis, University of Magdeburg, Germany, 2015.
(cited on Page 12 and 13)

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. FeatureIDE: An Extensible Frame-
work for Feature-Oriented Software Development. Science of Computer
Programming, 79(5):70–85, 2014. (cited on Page 47, 52, and 53)

[TKES11] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Sieg-
mund. Abstract Features in Feature Modeling. In Proceedings of the
International Software Product Line Conference (SPLC), pages 191–200.
IEEE Computer Society, August 2011. (cited on Page 2 and 16)

[VBP12] Marco T. Valente, Virgilio Borges, and Leonardo Passos. A Semi-
Automatic Approach for Extracting Software Product Lines. IEEE Trans-
actions On Software Engineering, 38(4):737–754, 2012. (cited on Page 28)

[vdLSR07] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action: The Best Industrial Practice in Product Line
Engineering. Springer Publishing Company, 2007. (cited on Page 1, 2, 27,

and 28)

[WL99] David M. Weiss and Chi T. R. Lai. Software product-line engineering:
a family-based software development process. Addison-Wesley Longman
Publishing Co., Inc, 1999. (cited on Page 28)

[YGM06] Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig. Assessing
merge potential of existing engine control systems into a product line.
pages 61–67, New York, NY, USA, 2006. (cited on Page 26)

[ZJ94] Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard Results concerning
Unordered Labeled Trees. Information Processing Letters, 49(5):249–254,
1994. (cited on Page 23)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 21. Dezember 2015

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Software Product-Line
	2.1.1 Domain Knowledge
	2.1.2 Feature Modeling
	2.1.3 Variability Implementation Techniques
	2.1.4 Domain and Application Engineering

	2.2 Clone-and-Own
	2.2.1 Traditional Clone-and-Own
	2.2.2 Usage of Version Control Systems
	2.2.3 Variants in Branches

	2.3 Merge Techniques
	2.3.1 Two-Way vs. Three-Way Merging
	2.3.2 Unstructured vs. Structured Merging

	3 Synchronization of Software Variants
	3.1 Variant Development
	3.1.1 Development of Few Variants
	3.1.2 Development of Many Variants
	3.1.3 Problem Statement

	3.2 Automating the Identification of Synchronization Targets
	3.2.1 Making Domain Knowledge Explicit
	3.2.2 Tagging Code to Features

	3.3 Automating the Synchronization
	3.3.1 Target-Focused Synchronization
	3.3.2 Source-Focused Synchronization

	3.4 Synchronizing in Batch Mode
	3.5 Summary

	4 Implementation: Variant Synchronization with VariantSync
	4.1 Synchronization Platforms
	4.1.1 Version Control System
	4.1.2 Integrated Development Environment
	4.1.3 Summary

	4.2 External Tools
	4.2.1 Eclipse IDE
	4.2.2 FeatureIDE
	4.2.3 Diff Utilities

	4.3 Change Management
	4.3.1 Change Detection
	4.3.2 Change History

	4.4 Code to Feature Mapping
	4.4.1 Feature Modeling
	4.4.2 Tagging Code to Features

	4.5 Applying Automated Synchronization
	4.5.1 Computing Synchronization Targets
	4.5.2 Synchronizing with Target-Focused Synchronization
	4.5.3 Synchronizing with Source-Focused Synchronization
	4.5.4 Merging Code Fragments into Variants
	4.5.5 Synchronizing in Batch Mode
	4.5.6 Increasing Code to Feature Mapping

	4.6 Limitations and Optimizations
	4.7 Summary

	5 Evaluation
	5.1 Research Questions
	5.2 Target System
	5.3 Simulating Variant Development
	5.4 Interpreting Results of Variant Development
	5.5 Discussion
	5.6 Summary

	6 Related Work
	7 Conclusion
	8 Future Work
	Bibliography

