
Implicit Constraints in Partial Feature Models

Sofia Ananieva
FZI Research Center for Information Technology,

Germany
ananieva@fzi.de

Matthias Kowal Thomas Thüm
Ina Schaefer

TU Braunschweig, Germany
{m.kowal, t.thuem, i.schaefer}@tu-bs.de

Abstract
Developing and maintaining a feature model is a tedious
process and gets increasingly difficult with regard to large
product lines consisting of thousands of features and con-
straints. In addition, these large-scale feature models typ-
ically involve several stakeholders from different domains
during development and maintenance. We aim at supporting
such stakeholders by deriving and explaining implicit con-
straints for partial feature models. A partial feature model
can either be a submodel of a feature model representing
the full product line or a specific feature model in a set of
interrelated models. For every implicit constraint, we gen-
erate an explanation exposing which other model parts and
constraints interfere with the partial model of interest. Thus,
stakeholders are only confronted with a small part of the
feature model reducing the complexity while preserving the
necessary information about dependencies. Our approach is
implemented in the open-source framework FeatureIDE.

Categories and Subject Descriptors D.2.9 [Software En-
gineering]: Management—Software configuration manage-
ment; D.2.13 [Software Engineering]: Reusable Software

Keywords Configurable Software, Feature Model

1. Introduction
Customers have a rising demand for highly configurable
products that can be exactly tailored to their individual re-
quirements [27]. In reverse, manufacturers have to pay more
attention to variability and its management for their prod-
ucts to cope with these demands. A famous example is the
automotive domain in which almost every car leaving the
factory is unique. Software plays an important role not only
in today’s vehicles, but in many everyday consumer prod-
ucts. Hence software systems also have to deal with vari-

ability. The upside of variability is to adapt systems to dif-
ferent kinds of environments and requirements. The down-
side is a large variant space, which has to be managed, main-
tained, and tested [21]. With the introduction of product lines
several decades ago, engineers tried to mitigate this prob-
lem [8, 16]. A product line consists of a set of related sys-
tems that share some commonalities and variabilities. For
example, every car must have a radio making it a common
feature, but a navigation system is only optional. Product
lines enhance the reuse potential enabling the generation of
a specific variant. They are known to reduce time-to-market,
simplify maintenance, and have a better cost-efficiency com-
pared to classical software development [9, 27].

Without restricting the large variant space, a product line
can contain feature combinations that are not possible or
useful. Kang et al. [16] introduced feature models to ex-
plicitly model these restrictions. Feature models are widely
used to express the intended variability of a product line [6].
Industrial-size feature models tend to have thousands of fea-
tures and cross-tree constraints [33]. However, maintainabil-
ity of a feature model decreases with its size posing a major
problem for developers [25]. A possible countermeasure is
to use feature model views showing only specific parts of the
complete model. Thus, developers can focus on parts most
relevant to them reducing the overall complexity [7, 14].

In most cases, the development of a product line is an
interdisciplinary undertaking involving countless developers
from domains such as mechanical-, electrical-, and software
engineering. As a result, the feature model can contain in-
formation that may not be relevant for individual developers
and can be hidden or split up using concepts such as different
views on feature models, feature model decomposition and
multi software product lines [1, 11, 20, 29, 30]. It is manda-
tory that no crucial information is lost using these methods,
e.g., dependencies between features of the software domain
and the mechanical domain are still respected and visible to
the developer in his partial feature model or feature model
view. Furthermore, by considering only a part of the model,
the developer may be confronted with hidden dependencies.
The constraints of the complete feature model can result in
restrictions for the partial model that are not directly visible
and have to be derived for the developer. We refer to such de-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FOSD’16, October 30, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4647-4/16/10...

http://dx.doi.org/10.1145/3001867.3001870

18

pendencies as implicit constraints. An explanation for these
implicit constraints is necessary to support the communica-
tion between the different disciplines and to find out which
model parts interfere in an unintended way.

Existing work focuses on the introduction of multiple
views or models following the separation of concerns prin-
ciple and preserving consistency in case of feature model
evolution for configuration purposes [11, 14, 29, 38]. The
actual derivation and additional explanation of implicit con-
straints is neglected or completely missing [20, 24]. Hence,
we propose an approach that provides developers with both
aspects without introducing new concepts and notations for
feature models or increasing the modeling workload for de-
velopers. The approach works on any submodel of a feature
model as well as on interrelated feature models. To the best
of our knowledge, the derivation of implicit constraints for
such models has never been proposed before. In summary,
we provide the following contributions:
1. We derive and explain implicit constraints for a partial

feature model and its given context.
2. We provide an open-source implementation in Fea-

tureIDE and evaluate the frequency and nature of implicit
constraints.

2. Case Study: Pick and Place Unit
A product line from the automation engineering domain,
namely the Pick and Place Unit (PPU), serves as running ex-
ample throughout this paper. The PPU is a universal produc-
tion demonstrator for studying variability and evolution [19].
Overall 15 variants are documented in detail with different
UML model types and source code [37]. In addition, a fea-
ture model is available representing the product line from the
customer’s point of view (cf. Fig. 1).

2.1 Feature Models
A feature model typically has a tree-like graphical represen-
tation depicting the hierarchically arranged set of features. A
feature model of the PPU is shown in Fig. 1. Relationships
in the feature model regarding parent and child features are
expressed with the common notation of mandatory, optional
features and or-, alternative groups and their underlying se-
mantics (cf. legend in Fig. 1 for the graphical representa-
tion) [9, 16]. Abstract features do not contain realization ar-
tifacts and are only used for structural purposes [33]. For
instance, the PPU can process up to two different types of
workpieces simultaneously with size Small and Large. The
operating environment can either be Smooth or Rough, but
not both at the same time. The additional functionalities of
Selfhealing and Diagnosis are optional. Relationships be-
tween features that are not related by a parent-child relation-
ship can be expressed using cross-tree constraints written
in propositional logic, e.g., A ⇒ B. However, the feature
model of the PPU in Fig. 1 does not provide us with any
cross-tree constraints at the moment.

Size

Conditions

Smooth

muC Diagnosis

Vendor 1 Vendor 2Small

PPUC

Rough

SelfhealingPositioningC Environment

Discrete

Additional Functionalities

Continuous

PLC

Large

WorkPieces Platform Type
Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

Figure 1: Feature model of the PPU: Customer model [19]

2.2 Interrelated Feature Models
The development and maintenance of the PPU involves mul-
tiple domains with software, mechanical and electrical en-
gineering that are not sufficiently represented in the previ-
ously described feature model. The model in Fig. 1 is solely
for configuration purposes by a potential customer or plant
manufacturer. As a result, three additional engineering fea-
ture models are available for the PPU covering the differ-
ent domains [11, 19]. The individual models are depicted
in Fig. 2. It is not surprising that some features are sim-
ilar to the customer feature model such as the positioning
(present in the electrical and software model) or additional
functionalities that are also visible in the software feature
model. However, some features are only present in the engi-
neering models, e.g., Safety. Fig. 2a consists of two alterna-
tive features describing different mechanical mechanism to
lift workpieces. These features are also reflected in Fig. 2b
as child features of Pneumatics and Electrics. The PPU can
be equipped with several sensors, namely Inductive, Micro
or Potentiometer, to ascertain the positions of workpieces
and the crane. For the PPU, an EmergencyStopButton is not
mandatory. Depending on the selected sensors, the position-
ing can work in a discrete or continuous manner (cf. Fig. 2c).
The PPU can always be controlled manually or operate fully
automatic. Finally, the PPU can have a diagnose function and
heals itself if a problem is encountered. It is not relevant for
our work, to what extent the healing is possible. The goal of
separate feature models is to reduce the complexity for the
developers and let them focus on important assets for their
domain [1, 31].

Several feature models alone do not provide an ultimate
solution to reduce complexity, since such an approach is
missing a very important aspect. The individual feature mod-
els have to be connected to each other in order to be able to
fully model the product line. Hence, we need a mechanism
to express dependencies between the separate feature mod-
els. The developers of the PPU models proposed a mapping
matrix between the customer feature model and the engi-
neering models to express such global constraints [11, 19].
For instance, a customer can select the small workpiece type
resulting in the selection of the features ChangeoverArmM
in the mechanics, VacuumGripper and ChangeoverArm in
the electrics and ChangeoverArmControl in the software.
Several of these dependencies are defined by the develop-
ers [11]. Hence, the mapping matrix sets the customer’s
model into context of the engineering models. Fig. 3 shows
an extract of the original matrix. The columns 1-4 (left-side)

19

LiftingLowering

PPUM

ChangeoverArmM CylinderM

(a) Feature model of the PPU: Mechanical model

Electrics Sensors

VacuumGripper PositioningE

PPUE

PotentiometerMicro

SafetyChangeoverArmCylinder

Inductive EmergencyStopButton

Pneumatics

(b) Feature model of the PPU: Electrical model

DiscreteSCylinderControl Manual SelfhealingS

Lifting Lowering Control

SetupChangeoverArmControl DiagnosisS

PPUS

Automatic

Additional FunctionalitiesSMode of operationPosition Control

ContinuousS

(c) Feature model of the PPU: Software model

Figure 2: Engineering feature models of the PPU [11, 19]

Figure 3: Extract from the mapping matrix [11].

represent features from the customer feature model. The
three top-level rows belong to the engineering models. The
matrix is interpreted as follows: Selecting the small work-
piece size in the customer model requires changeover arm
in the mechanics, vacuum gripper in the electrics and so on.
The connection of the individual engineering models to each
other is missing in the mapping. Although the definition is
rather informal and the matrix does not scale very well, it is a
first step contributing to a satisfying solution for interrelated
feature models.

A partial feature model can either be a model represent-
ing one domain, e.g., the customer model for the PPU or a
submodel in a feature model, e.g., the WorkPieces represents
a submodel with all of its subfeatures. Most automated anal-
ysis methods for feature models rely on analyzing a single
model. If multiple models exist as in the case of the PPU,
they are merged into one model. A common solution is to
create a new root feature and rearrange the separate feature
models of each domain below this new root feature also re-
sulting in one large feature model for the product line. Our
approach also uses the last technique at least for analyses
purposes to manage separate feature models.

In order to reason about the implicit constraints of the
PPU, it is first necessary to convert the mapping matrix
in a representation that is easy to analyze. Feature models
can be translated to propositional logic and many automated
analysis techniques already use this format [4, 6, 22]. In a
first step, we translated the matrix into propositional cross-

tree constraints. The complete list of constraints is depicted
in Fig. 4. They represent our global constraints that must be
valid for the complete product line. Highlighted constraints
are redundant and provide no additional information, hence
it would be possible to remove them without introducing
anomalies or false configuration possibilities [12, 17]. We
validated the correctness of all cross-tree constraints with
the actual developers of the PPU. As previously mentioned,
15 variants of the PPU are described in detail. The actual
feature models permit a significant larger number of possible
variants, since the mapping matrix is not restrictive enough.

Small ⇒ ChangeoverArmM

Small ⇒ VacuumGripper

Small ⇒ ChangeoverArm

Small ⇒ ChangeoverArmControl

Large ⇒ CylinderM

Large ⇒ VacuumGripper

Discrete ⇒ Micro ∨ Inductive ∨ Potentiometer

Discrete ⇒ DiscreteS

Continuous ⇒ Potentiometer

Figure 4: Cross-tree constraints based on the mapping ma-
trix [11, 19]. Highlighted constraints are redundant.

3. Deriving Implicit Constraints
We call a feature model representing the full product line a
complete feature model. This includes separate feature mod-
els for different domains, since they can be merged into
one large model under a new root feature. Most of the au-
tomated analysis techniques including our own operate at
this level [6]. A partial feature model is an arbitrary sub-
model in this complete model. Implicit constraints occur if
we only consider such partial feature models of the product
line. Implicit constraints always provide redundancy consid-
ering the complete feature model, since the information is
already available in the cross-tree constraints of the com-
plete feature model, which we refer to as global constraints.
The idea of a partial feature model is to reduce the visi-
ble complexity for the developer. Showing globally defined
cross-tree constraints does not help if the features are un-
known and the number can easily add up to several thou-
sands. Stakeholders need to focus on constraints relevant for
the partial feature model that they observe at the moment.
In addition, it is mandatory that developers be aware of such
hidden dependencies in order to prevent the introduction of
inconsistencies or errors during feature model maintenance
and development.

Fig. 5 shows four feature models and two cases resulting
in implicit constraints. The first example describes a cycle
of implications between two feature models FM1, FM2 (cf.
Fig. 5a). Feature C from FM1 implies feature G from the
FM2. Feature G, on its part, implies feature D from FM1.
Both global cross-tree constraints result in a hidden implica-
tion between Feature C and D in FM1, namely C ⇒ D. The
second example presents another use case of an implicit con-
straint in FM1 (cf. Fig. 5b). Feature C from FM1 implies fea-
ture G from the FM2. Feature D from FM1 implies feature

20

(a) Hidden implication (b) Hidden exclusion

Figure 5: Two exemplary implicit constraints

H from FM2. An alternative relationship between feature G
and H in FM2 results in a hidden mutual exclusion between
feature C and D in FM1, i.e., ¬(C ∧ D). It is possible to
find similar cases for our running example of the PPU. For
instance, consider the two types of workpieces with Small
and Large. Both features imply a different lifting/lowering
mechanic in the mechanical feature model. However, these
features are part of an alternative relationship resulting in an
implicit constraint in the form of (¬Small ∨ ¬Large). The
PPU contains several more implicit constraints which we ex-
plain in Section 4. To assure the quality of partial models, the
automated detection of hidden dependencies has become an
important field of research [18, 20, 30]. For our approach,
the detection is a necessary prerequisite to actually explain
why implicit constraints occur. To the best of our knowledge,
the explanation part is often neglected in literature [6].

The first challenge is the creation of a partial model
based on a complete one, while preserving all dependen-
cies. The elimination of features must not change depen-
dencies between features in the submodel. A state-of-the-art
approach to remove features while maintaining dependen-
cies between other features is feature model slicing [2]. Fea-
ture model slicing can be applied for different scenarios,
i.e., feature model evolution, removing abstract features and
for the decomposition of feature models [2, 35]. Krieter et
al. present an efficient algorithm for feature model slicing
in FeatureIDE [18]. The algorithm has already been suc-
cessfully applied in practice [30]. Inputs to the algorithm
comprise a feature model in conjunctive normal form (CNF)
and a subset of features which shall not appear in the par-
tial feature model. A CNF is a conjunction of clauses, a
clause consists of a set of literals and a literal is a vari-
able or its negation. The input feature model represents a
complete feature model before the slicing operation. After
performing the feature model slicing, the algorithm returns
a sliced feature model in CNF without the specified set of
features while maintaining dependencies between features
in the sliced model. The core of the slicing algorithm is log-
ical resolution. The main idea of logical resolution involves
the construction of a new clause, which represents a rela-
tionship between features of the sliced feature model. We
refer to this clause as resolvent, represented by a new cross-
tree constraint of the sliced feature model. The construction

of a resolvent requires two clauses such that the first clause
contains the literal to remove in its positive form and the
second clause contains the literal to remove in its negated
form. Krieter et al. derive the resolvent by combining the
two clauses and removing the respective literal. The resol-
vent, on its part, represents a transitive relationship between
the two clauses. We consider a new resolvent as an implicit
constraint. A more detailed explanation of the slicing algo-
rithm is available elsewhere [18].

We adapt this feature model slicing algorithm in our ap-
proach. A specific feature, that acts as the root of the par-
tial feature model, is selected. The slicing algorithm then
removes all features that are not part of the subtree of the
new root feature. Given the PPU, the process works as fol-
lows: First, the four feature models are merged into one large
model. Therefore, we create a new root feature, e.g., PPU
and the old root features, namely PPUC, PPUM, PPUE and
PPUS, act as children of PPU. Second, we can select any
feature in the complete model, e.g., one of the old root fea-
tures and the output of the slicing algorithm is compared to
the complete model. All new constraints are then marked
as implicit. For the customer model, we compute two im-
plicit constraints with (Diagnosis ∨ ¬ Selfhealing) and (¬
Small ∨ ¬ Large). The sliced feature model might con-
tain cross-tree constraints from the complete feature model.
This is the case if a global cross-tree constraint is defined
solely with features of the partial/sliced model, e.g., the con-
straint only includes features from the customer model such
as Small ⇒ Discrete. In order to detect implicit cross-
tree constraints, it is necessary to differentiate between old
global constraints and new implicit constraints by compar-
ing cross-tree constraints of both feature models. As for the
PPU, we have already shown the global constraints in Fig. 4.
Since the individual feature models of the PPU have no con-
straints at all, it is obvious that no global constraint occurs
after the slicing process for the customer model. The hidden
dependencies are now visible to the developer. At this point,
we are still missing the cause why these constraints occur
and what the connection to the other feature model parts is.

4. Explaining Implicit Constraints
Deriving and presenting the implicit constraints to the de-
veloper is hardly a sufficient solution, since it is laborious
to manually identify the cause of such dependencies in large
feature models. Hence, we propose an additional step to ex-
plain why an implicit constraint holds. The explanation al-
gorithm is adapted from our previous work [17] and is orig-
inally used to explain anomalies in feature models, e.g. dead
and false-optional features, redundant constraints or void
feature models. It is a boolean constraint propagation (BCP)
algorithm functioning as inference engine for a logic truth
maintenance system. Recalling the implicit constraint for the
hidden implication C ⇒ D from Fig. 5a, we can generate
the following explanation with: Constraint C ⇒ D is im-
plicit, because: G ⇒ D is a constraint and C ⇒ G is a con-

21

straint. Hence, the developer knows exactly why an implicit
constraint exists in the partial feature model. The reasons for
implicit constraints in the PPU are already more complex
and difficult to identify manually. However, before propos-
ing explanations for our running example, we describe the
basic concept of our explanation algorithm.

Boolean Constraint Propagation BCP functions as our
core principle and uses boolean constraints that are repre-
sented by means of boolean formulas. They use connectives
such as OR, AND, and NOT to combine variables. Rea-
soning about boolean constraints is achieved by propagat-
ing known values for boolean variables. A brief example is
shown below:
1. A ∧B = C: If C = true, then A and B must be true.
2. A∨B = C: If A = false ∧ C = true, then B must be true.
BCP is also referred to as Unit Resolution and uses such
propagation techniques to conclude inferences [10]. The in-
put to BCP is specified by a set of variables and a formula
in conjunctive normal form (CNF). The truth value of the
variables is defined by a three-value logic with (true, false,
unknown). Using this specification, every clause in the CNF
is assigned to one of the following types:
• Satisfied: at least one literal is true
• Violated: all literals are false
• Unit-Open: one literal is unknown while the remaining

literals are false
• Non Unit-Open: more than one literal is unknown, the

rest is false
Hence, a unit-open clause can be satisfied by setting its
unknown literal to true.

Example Regarding the clause ¬X ∨ Y ∨ Z, the different
types are demonstrated:
• If X is false, the clause is satisfied.
• If X is true, Y is false and Z is false, the clause is violated.
• If X is true, Y is false and Z is unknown, the clause is

unit-open. Z is derived as true.
• If X is true and Y and Z are unknown, the clause is non

unit-open.

The fundamental idea of BCP is depicted in Fig. 6. The
algorithm is invoked with initial truth value assignments, the
premises. Given the premises, BCP propagates the resulting
consequences for the other literals. Selecting truth values for
the premises is a crucial step and shapes the core of our ex-
planation algorithm. During the first iteration, BCP pushes
all unit-open clauses it finds in the CNF on a stack. After-
wards, a unit-open clause is removed from the stack and
BCP deduces the truth value of the unknown literal. Again,
BCP searches the CNF for new unit-open clauses and pushes
them on the stack. The iterative process is repeated until a
violation is encountered during constraint propagation. BCP
reports the contradiction and terminates. Finding the viola-
tion is crucial to explain an implicit constraint in the partial
feature model.

Premises

CNF

Unit-open

Figure 6: Overview of Boolean Constraint Propagation

BCP stores information in a set of 3-tuples with
{conclusion, reason, {antecedents}}

for every deduced truth value assignment, i.e., the conclu-
sion represents an inferred value, while the reason contains
the unit-open clause leading to the derived assignment. An-
tecedents hold the predecessors of the considered clause.
Hence, all variables in the clause that were previously ref-
erenced and for which BCP also has a 3-tuple.

Example Consider the formula of a feature model (X ⇒
Y) ∧ (Y ⇒ ¬X), which is transformed to a CNF (¬X ∨
Y) ∧ (¬Y ∨ ¬X). BCP sets X = true and maintains its
reason as premise, as presented in Table 1. A premise does
not have antecedents. BCP pushes unit-open clauses from
the CNF on the stack. After examining (¬Y ∨ ¬X), BCP
infers Y = false, saves its unit-open clause as reason and
refers to variable X as its value was referenced. The BCP
algorithm discovers the violated clause (¬X∨Y) and reports
the contradiction which we use to generate an explanation.

ID Con. Reason AC Stack
#1 X=1 premise (¬X ∨ Y), (¬Y ∨ ¬X)
#2 Y=0 (¬Y ∨ ¬X) #1 (¬X ∨ Y)
#3 (¬X ∨ Y) #2 violated clause

Table 1: BCP process. AC = antecedents, Con. = conclusion.

Batory originally used BCP to support the configuration
process of a feature model by giving explanations in propo-
sitional logic why features cannot be selected anymore [4].
In our previous work, we adapted BCP to explain dead and
false-optional features, void feature models and redundant
constraints [17]. We extend this work to also explain im-
plicit constraints in feature models and to give feedback in
an user-friendly manner.

BCP for Implicit Constraints The slicing algorithm de-
scribed in the previous section extracts a new, so called,
sliced feature model with fewer features while preserving
dependencies between features. Inputs to the slicing algo-
rithm involve a complete feature model, which is used to
extract a sliced model, and a set of features to remove. The
sliced feature model may contain additional cross-tree con-
straints, which we refer to as implicit constraints. The detec-
tion of implicit constraints requires a comparison between
(global) cross-tree constraints of the complete feature model
and cross-tree constraints of the sliced model. If a constraint
of the sliced model does not appear in the complete feature
model, it is implicit.

22

We put the following thoughts into explaining an implicit
constraint: Feature model slicing constructs an implicit con-
straint by combining two specific clauses. One clause con-
tains a positive form of the literal to remove, while the other
contains a negative form of it. The resulting implicit con-
straint (resolvent) represents a hidden dependency between
the involved clauses. Implicit constraints are always redun-
dant ones, since their information is already available regard-
ing the complete feature model. The global cross-tree con-
straints contain the same information, but are not helpful in a
partial feature model as the dependencies are expressed in a
much more complex manner and features may by unknown
in the partial model. We pass the following input parameters
to BCP:
• A complete feature model in CNF. We do not pass the

sliced feature model, because an explanation can only
arise from the complete feature model.
• A truth value assignment for features from the implicit

constraint making the constraint non-satisfiable.
An explanation can involve features from multiple neighbor-
ing partial models, which is why the sliced feature model is
not sufficient to generate a full explanation. Redundancy oc-
curs if the relationship expressed in the cross-tree constraint
is already modeled in some other way in the feature model,
which is exactly the case for an implicit constraint. We can
use this relationship to explain the constraint. The CNF of
the complete feature model does not contain the redundant
constraint and forms the first input parameter. During the
creation of the CNF, we additionally store information about
the tracing of each literal to the feature model. Every literal
belongs to a clause which either originates from a cross-tree
constraint or from the feature hierarchy. This tracing enables
us to provide a user-friendly explanation to the developer.

The crucial part is the selection of premises as the sec-
ond input. The truth values of the implicit constraint must
result in a contradiction in order to generate an explanation
with BCP. Hence, we select the premises resulting in the re-
dundant constraint to be violated. A contradiction is bound
to occur, since the information of the constraint is still con-
tained in the CNF due to redundancy. However, multiple as-
signments can lead to a non-satisfiable constraint and it is
necessary to analyze all combinations. Every combination
can result in a different explanation giving us only a partial
solution for the cause of an implicit constraint. A union of
all incomplete explanations produces the final result which is
able to explain an implicit constraint. Duplicate explanation
parts are ignored to reduce the length. A detailed description
for explaining redundant constraints is given elsewhere [17].

Again, consider the feature models in Fig. 5a resulting
in an implicit constraint C ⇒ D. In order to apply the
slicing algorithm, we need to pass a complete feature model.
Tools like VELVET support the composition of interrelated
feature models [31]. A composition of feature models results
in a new abstract root containing the prior roots as child

features. In Table 2, we present the BCP process in order
to explain the implicit constraint C ⇒ D. First, we pass
the feature model in CNF and premises to BCP. In this
case, we have only one truth value assignment leading to
a violated clause with D = false and C = true. Then,
BCP collects unit-open clauses from the CNF and pushes
them on the stack. We refrain from showing the complete
CNF due to its length. BCP concludes G to be true and
updates all respective literals in the CNF with the truth value.
This results in a violated clause ¬G ∨ D. An explanation
can be generated by reporting the reasons: first, we take the
violated clause into account and, second, we traverse the
reasons for conclusions backwards to the premises. Initial
value assumptions do not need to be reported to shorten the
explanation.

ID Con. Reason AC Stack
#1 D=0 premise
#2 C=1 premise (¬G ∨D), (¬C ∨B),

(¬C ∨G)
#3 G=1 (¬C ∨G) #2 (¬G ∨D)!, (¬C ∨B),

(¬G ∨ F), (¬G ∨ ¬H)

Violated Clause: (¬G ∨D)

Explanation: Constraint C ⇒ D is implicit, because:
G ⇒ D is a constraint(violated clause) and C ⇒ G is
a constraint (#3).

Table 2: Explaining the implicit constraint C ⇒ D.
Returning to our running example, the PPU, our approach

derives four implicit constraints with:
1. Diagnosis ∨ ¬Selfhealing (Customer Model)
2. ¬Small ∨ ¬Large (Customer Model)
3. Cylinder ∨ ChangeoverArm (Electrical Model)
4. DiagnosisS ∨ ¬SelfhealingS (Software Model)
Table. 3 presents explanations for the implicit constraints
above retrieved using our extension of FeatureIDE. The first
constraint is a hidden implication in the customer feature
model because of two global cross-tree constraints. A sim-
ilar dependency is detected for the software feature model
shown in the fourth constraint. The explanations reveal that
almost identical features are involved in both cases. Recall-
ing Fig. 3, the explanations can be mapped to the last three
cross-tree constraints resulting in two implicit dependencies.
A hidden exclusion is expressed in the second constraint.
We have two features in the customer model implying differ-
ent features in an alternative relationship of the mechanical
model. The third constraint gives the most complex expla-
nation in our running example. Considering only the electri-
cal feature model without implicit constraints, it is possible
to avoid the selection of the Cylinder and ChangeoverArm
at all. However, the derived implicit constraint forbids this
configuration, since we have to select at least one of both
features. We observe a transitive chain in the customer fea-
ture tree from the root PPU of the complete model to the
two workpiece types Small and Large. Again, both imply
different features even from different feature models. How-

23

Constraint Explanation Partial Models
Diagnosis ∨ ¬ Selfhealing SelfhealingS→ Diagnosis is a constraint Customer, Software

Selfhealing→ SealfhealingS is a constraint
¬ Small ∨ ¬ Large Large→ CylinderM is a constraint Customer, Mechanical

CylinderM and ChangeoverArmM are alternative children of LiftingLowering
Small→ ChangeoverArmM is a constraint

Cylinder ∨ ChangeoverArm PPU is the root Customer, Mechanical,
PPUC is a mandatory child of PPU Electrical, Software
WorkPieces is a mandatory child of PPUC
Size is a mandatory child of WorkPieces
Small and Large are or children of Size
Small→ ChangeoverArm is a constraint
Large→ CylinderM is a constraint
CylinderControl⇔ CylinderM is a constraint
CylinderM⇔ Cylinder is a constraint

Diagnosis ∨ ¬ SelfhealingS Diagnosis→ DiagnosisS is a constraint Customer, Software
SelfhealingS→ Diagnosis is a constraint

Table 3: Explaining implicit constraints of the PPU
ever, due to bijections, an implicit dependency occurs in the
electrical feature model.

The last column in Table 3 depicts all involved partial
feature models for the specific implicit constraint. For the
PPU, we mostly have two partial models responsible for a
hidden dependency. However, in one case features from all
partial models are present in the explanation. A complete ex-
planation often involves features from multiple partial mod-
els which is necessary to fully understand the hidden depen-
dency and supports the communication between developers,
since it is now obvious which features are responsible.

5. Evaluation
We give a description of our prototypical implementation in
FeatureIDE and explore the adapted BCP algorithm in prac-
tice with a large-scale feature model. For the evaluation, we
investigate the computation time, the number and structure
of the implicit constraints. In detail, we look at the following
research questions:
RQ1: How many implicit constraints exist?
RQ2: How long does it take to derive them?
RQ3: What is their structure?
RQ4: How many partial models are involved?

5.1 Implementation
We implemented our approach in the open-source frame-
work FeatureIDE and it is part since release, FeatureIDE
3.1.0 1. It uses the CNF generated from the feature model to
infer causes leading to an implicit constraint and the expla-
nations are built by a combination of several reasons. How-
ever, BCP in its original form gives us only pure CNF clauses
for an explanation leading to a contradiction (cf. Section 3).
This representation is hardly comprehensible by developers,
since the relation to the feature model is not obvious. As it is
our goal to provide useful feedback to the developer, we in-

1 https://github.com/FeatureIDE/FeatureIDE

troduced a tracing between the feature model and the literals
in its CNF.

Every feature comprises structural information in a fea-
ture model. It always occurs in the tree topology and can
take different roles with child or parent and additionally it
can be mandatory, optional or in alternative groups and or
groups. Furthermore, it may be present in cross-tree con-
straints. We take advantage of the structural information to
present the explanations in a user-friendly manner reflected
in the graphical feature model (cf. Section 4).

After modeling a feature model in FeatureIDE, our ap-
proach can be executed by simply doing a right-click on a
feature and selecting Show Hidden Dependencies of Sub-
model in the context menu. A new page opens containing
the partial feature model with the selected feature as root fea-
ture. Below the root feature, all features appear in the same
way as in the complete feature model. Global cross-tree con-
straints relevant for the partial model are depicted below the
feature hierarchy. Implicit constraints can be distinguished
by a surrounding red border and are marked as redundant
as well. The presented partial model is not editable at the
moment. Reflecting changes in the partial model back to the
complete model is a challenge for future work.

5.2 Application
At first, we focus on performance measurements and eval-
uations concerning the number of implicit constraints in a
large product line to answer RQ2 and one part of RQ1. As
case example, we have a feature model from the automo-
tive industry with 2,513 features and 2,833 global cross-tree
constraints. The execution time has been measured using an
Intel(R) Core(TM) i7-4800MQ CPU with 2.7 GHz and 16-
GB RAM.

The feature model slicing algorithm has an average com-
putation time of 0.44 s across all considered partial feature
models. Table 4 presents the detailed results of our evalu-
ation. The first column refers to the depth of a feature in

24

the complete model that is selected as the root of the par-
tial feature model. For instance, the automotive example has
six child features below its root at depth one. The third col-
umn contains the number of features in these partial models,
e.g., the largest model at position 5 contains 2,065 features
in its subtree. This partial model also contains with a count
of eleven most of the implicit constraints at this depth. Over-
all, there are twelve hidden dependencies which seems to
be a rather small amount in comparison to the size of the
complete feature model. Furthermore, we evaluate the child
features of these six features as well resulting in 25 ana-
lyzed partial models. The number in brackets indicates to
which parent feature (1-6) the 25 features belong. We can
observe that the amount of implicit constraints significantly
increased with 189. The computation time for partial mod-
els without any implicit constraints is close to the 0.44s of
the slicing algorithm, since our approach does not start any
explanation attempts. Depending on the number of derived
implicit constraints, the computation time rises constantly.
However, this is to be expected and the time with at most
170s for 123 constraints is still acceptable. The average num-
ber of explanation parts (or length of the explanation) is 15.1
parts at depth one and 16.46 at depth two. Given several hun-
dred features in even in the partial models, we believe that
the explanation is still comprehensible and definitely benefi-
cial for the developer in understanding the dependencies. A
more detailed reasoning on the explanation length is avail-
able in our prior work [17]. Thus, we conclude that implicit
constraints are present and relevant for real-world feature
models (cf. RQ1) and the computation time of BCP is ac-
ceptable (cf. RQ2).

RQ3 questions the structure of the derived implicit con-
straints. We were able to identify three major groups of log-
ical expressions:
1. Implication: The implicit constraint represents an impli-

cation, e.g. A ⇒ B or A ∧B ⇒ C.
2. Exclusion: The implicit constraint represents a mutual

exclusion between features, e.g. ¬(A ∧B).
3. Negation: The implicit constraint represents a negated

feature, e.g., ¬A.
Table 5 presents our classification of the derived 201 im-

plicit constraints into the three major groups and an addi-
tional group for any another kind of logical expressions. We
also give examples of the identified CNF patterns. As in-
dicated by the overall percentage, almost all implicit con-
straints can be mapped to one of the major categories. Im-
plication forms by far the largest group with about 75%. Fi-
nally, we took a closer look to the features occurring in the
constraints. Naturally, an implicit constraint involves addi-
tional partial feature models meaning that some features in
the constraint are part of another submodel. We observed
that up to four individual submodels are involved in an im-
plicit constraint. Less than 40% of all features in an explana-
tion are local features meaning features of the partial model

Depth Partial Model # Features # IC Overall (s)
(Parent)

1 1 105 1 0.81
1 2 171 - 0.46
1 3 54 - 0.52
1 4 112 - 0.51
1 5 2065 11 542.6
1 6 5 - 0.43
2 7 (1) 8 - 0.5
2 8 (1) 72 - 0.47
2 9 (1) 4 - 0.48
2 10 (1) 3 2 1.05
2 11 (1) 17 - 0.45
2 12 (2) 167 - 0.48
2 13 (2) 3 - 0.45
2 14 (3) 21 2 2.08
2 15 (3) 18 - 0.46
2 16 (3) 3 - 0.46
2 17 (3) 3 - 0.44
2 18 (3) 5 - 0.44
2 19 (3) 3 - 0.41
2 20 (4) 3 - 0.46
2 21 (4) 88 - 0.45
2 22 (4) 16 - 0.43
2 23 (4) 4 - 0.45
2 24 (5) 684 123 170.83
2 25 (5) 16 - 0.44
2 26 (5) 948 39 75.7
2 27 (5) 231 20 21.24
2 28 (5) 185 3 2.51
2 29 (6) 2 - 0.45
2 30 (6) 1 - 0.44
2 31 (6) 1 - 0.46

Table 4: Implicit constraints (IC) for the automotive model.
Logic CNF Pattern Overall
Neg. ¬A 8.6 %

Impl.
¬A ∨B 14.6 %

¬A ∨ ¬B ∨ C 58.1 %
¬A ∨B ∨ C 2.5 %

Excl. ¬A ∨ ¬B 15.7 %
Other A ∨B ∨ C 0.5 %

Table 5: Classification of implicit constraints in logical ex-
pressions and representation as CNF patterns.
in which the implicit constraint occurred. An explanation is
comprised of 24% up to 56.1% local features. On average,
explanations comprise 37.35% local features leading us to
the conclusion, that a hidden dependency is mostly caused
by relations between features from other submodels, thus an-
swering (RQ4).

Consequently, implicit constraints are necessary to under-
stand partial feature models in isolation.

6. Related Work
A considerate amount of research has been conducted on
the automated analysis of feature models and feature model-

25

ing itself. FeatureIDE, TVL, FAMILIAR, SPLConqueror,
Clafer, and pure::variants are only some results of this
work [3, 26, 32]. Many approaches already provide support
for analysis techniques such as anomaly detection [5, 6, 23],
but only some respect dependencies between different par-
tial models [20, 31] and even fewer actually explain the
dependencies or anomalies [6, 24]. Furthermore, we are the
first to make implicit constraints explicitly visible for the
developer during the modeling process.

Removing features from a feature model is called feature
model slicing [2] and several approaches exist in literature to
perform this task [2, 34]. We take advantage of an approach
implemented in FeatureIDE by Krieter et al. [18] with which
a larger case study was conducted elsewhere [30].

A different concept to reduce complexity for the devel-
opers and present only relevant information is feature model
views. Instead of actually removing the features as in slic-
ing, views hide undesired features. Clark et al. [7] provide a
first theory for feature model views. Checking the compati-
bility of different views as well as reconciliation of compat-
ible views is possible. Views are often connected to the con-
figuration process and not the actual development or main-
tenance of a feature model [14, 29]. Similar to the previ-
ous approach, a formalism for defining multiple views and
checking the consistency is developed and evaluated. These
aspects can be extended to the concept of multi software
product lines combining several product lines and express-
ing their dependencies [38]. VELVET supports the devel-
opment of such multi software product lines. It also adapts
the concept of merging the separate feature models together
below an artificial root and lets stakeholders express de-
pendencies between the individual models [31]. Lettner et
al. [20] added functionality in FeatureIDE to support differ-
ent modeling spaces, modeling at different abstraction levels
and dependencies between the spaces using inter-space de-
pendencies. Inter-space refers to dependencies between the
solution, problem, and configuration space based on the fea-
ture model. Revealing and understanding such dependencies
between features from different spaces turned out to be ex-
tremely challenging. Although, we do not operate in differ-
ent spaces, this challenge can be exactly mapped to depen-
dencies in partial feature models. Another approach work-
ing at the configuration level was presented by Mendonça et
al. [24]. Implicit dependencies are also detected with truth
value propagation in a CNF and presented in a graph-based
manner during configuration time.

A different type of implicit constraint is described in [15].
Modeling a product line with a feature model and an archi-
tectural model may lead to inconsistencies, e.g., the feature
model allows configurations that are physically not possi-
ble due to architecture restrictions. As a result, the feature
model is explicitly enhanced with implicit constraints to ex-
press these aspects. Hidden dependencies can also have an
impact by linking features to code artifacts. Removing a fea-

ture might have undesired side effects if the feature was part
of an implicit dependency and not known to the developer.
Therefore, a tracing is proposed as a possible solution [13].

Considering the explanation process, we are most closely
related to our previous work and work done by Batory [4].
The first attempt to relate propositional formulas to prod-
uct lines was executed by Mannion [22]. Building upon this
work, Batory adapted a BCP algorithm to support develop-
ers in the configuration process of a variant using a feature
model [4]. The open-source implementation is available in
GUIDSL and gives feedback in terms of why a specific fea-
ture cannot be selected. No support for implicit constraints
is present and the explanations are presented in proposi-
tional formulas. In our previous work [17], we used this
approach as foundation and provided explanations for dif-
ferent anomaly types, e.g., dead and false-optional features,
void feature models, and redundant constraints. We extended
this approach to explain implicit constraints in partial feature
models in an user-friendly manner. Explaining these anoma-
lies is also presented in other works [6, 28, 36]. However, no
approach considers the explanation of implicit constraints.

7. Conclusion
We have presented an approach for deriving and explaining
implicit constraints in partial feature models. Implicit con-
straints are numerously present in product lines and can-
not be neglected for development and maintenance purposes.
Our evaluation with an industrial-size feature model is a ma-
jor contribution and shows the general feasibility and scal-
ability of the approach. An open-source implementation is
available in FeatureIDE.

Some aspects are left for future work. An important task
is to enable edit operations in the partial feature model and
reflect them back to the complete one in order to fully sup-
port maintenance. A small user study with the mechanical
engineers responsible for the PPU is planned to get qualita-
tive feedback of how to improve explanations even further.

Acknowledgments
This work was partially supported by the DFG (German Re-
search Foundation) under the Priority Programme SPP1593:
Design For Future — Managed Software Evolution. We
would like to thank Stefan Feldmann for his support in val-
idating the constraints of the PPU and Sebastian Krieter for
his help with FeatureIDE.

References
[1] M. Acher, P. Collet, P. Lahire, and R. B. France. Decompos-

ing feature models: Language, environment, and applications.
ASE, Washington, DC, USA, 2011. IEEE Computer Society.

[2] M. Acher, P. Collet, P. Lahire, and R. B. France. Slicing
feature models. ASE, pages 424–427, Washington, DC, USA,
2011. IEEE Computer Society.

[3] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wa-
sowski. Clafer: Unifying Class and Feature Modeling. Soft-
ware & Systems Modeling, pages 1–35, 2014.

26

[4] D. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proc. Int’l Software Product Line Conf. (SPLC),
pages 7–20, Berlin, Heidelberg, 2005. Springer.

[5] D. Benavides, A. Felfernig, J. A. Galindo, and F. Reinfrank.
Automated Analysis in Feature Modelling and Product Con-
figuration. ICSR. Springer, Berlin, Heidelberg, 2013.

[6] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
Analysis of Feature Models 20 Years Later: A Literature Re-
view. Information Systems, 35(6):615–708, 2010.

[7] D. Clarke and J. Proença. Towards a theory of views for
feature models. In G. Botterweck, S. Jarzabek, T. Kishi,
J. Lee, and S. Livengood, editors, SPLC Workshops, pages
91–98. Lancaster University, 2010.

[8] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, Boston, MA, USA, 2001.

[9] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM/Addison-Wesley,
New York, NY, USA, 2000.

[10] M. Davis and H. Putnam. A Computing Procedure for Quan-
tification Theory. JACM, 7(3):201–215, 1960.

[11] S. Feldmann, C. Legat, and B. Vogel-Heuser. Engineering
Support in the Machine Manufacturing Domain through Inter-
disciplinary Product Lines: An Applicability Analysis. IFAC-
PapersOnLine, 48(3):211 – 218, 2015.

[12] A. Felfernig and M. Schubert. Fastdiag: A Diagnosis Algo-
rithm for Inconsistent Constraint Sets. In DX 2010, Portland,
OR, USA, pages 31–38, 2010.

[13] Y. Ghanam and F. Maurer. Linking feature models to code
artifacts using executable acceptance tests. In SPLC, pages
211–225, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder,
and E. K. Abbasi. Supporting Multiple Perspectives in
Feature-Based Configuration. Software and System Modeling,
12(3):641–663, July 2011.

[15] M. Janota and G. Botterweck. Formal Approach to Integrat-
ing Feature and Architecture Models, pages 31–45, FASE.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, SE
Institute, 1990.

[17] M. Kowal, S. Ananieva, and T. Thüm. Explaining Anomalies
in Feature Models. GPCE, New York, NY, USA, 2016. ACM.

[18] S. Krieter, R. Schröter, T. Thüm, W. Fenske, and G. Saake.
Comparing algorithms for efficient feature-model slicing. In
SPLC, New York, NY, USA, September 2016. ACM.

[19] C. Legat, J. Folmer, and B. Vogel-Heuser. Evolution in indus-
trial plant automation: A case study. In IECON, 2013.

[20] D. Lettner, K. Eder, P. Grünbacher, and H. Prähofer. Feature
modeling of two large-scale industrial software systems: Ex-
periences and lessons learned. In MODELS, 2015.

[21] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze.
An Analysis of the Variability in Forty Preprocessor-Based
Software Product Lines. In ICSE, pages 105–114, Washing-
ton, DC, USA, May 2010. IEEE.

[22] M. Mannion. Using First-Order Logic for Product Line Model
Validation. In Proc. Int’l Software Product Line Conf. (SPLC),
pages 176–187, Berlin, Heidelberg, 2002. Springer.

[23] J. Meinicke, T. Thüm, R. Schöter, F. Benduhn, and G. Saake.
An Overview on Analysis Tools for Software Product Lines.
In SPLatools, New York, NY, USA, 2014. ACM.

[24] M. Mendonça, D. D. Cowan, W. Malyk, and T. C. de Oliveira.
Collaborative product configuration: Formalization and effi-
cient algorithms for dependency analysis. JSW, 2008.

[25] T. Mens and S. Demeyer, editors. Software Evolution.
Springer-Verlag, Berlin Heidelberg, 2008.

[26] M. Mernik, B. R. Bryant, G. Cabri, M. Ganzha, M. Acher,
P. Collet, P. Lahire, and R. B. France. FAMILIAR: A Domain-
Specific Language for Large Scale Management of Feature
Models. Science of Computer Programming, 78(6), 2013.

[27] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, Berlin, Heidelberg, Sept. 2005.

[28] L. Rincón, G. L. Giraldo, R. Mazo, and C. Salinesi. An
Ontological Rule-Based Approach for Analyzing Dead and
False Optional Features in Feature Models. Electronic Notes
in Theoretical Computer Science, 302:111–132, 2014.

[29] J. Schroeter, M. Lochau, and T. Winkelmann. Multi-
Perspectives on Feature Models. In MODELS, pages 252–
268, Berlin, Heidelberg, 2012. Springer.

[30] R. Schröter, S. Krieter, T. Tüm, F. Benduhn, and G. Saake.
Feature-Model Interfaces: The Highway to Compositional
Analyses of Highly-Configurable Systems. In ICSE, pages
667–678, New York, NY, USA, May 2016. ACM.

[31] R. Schröter, T. Thüm, N. Siegmund, and G. Saake. Automated
Analysis of Dependent Feature Models. In VaMoS, pages 9:1–
9:5, New York, NY, USA, Jan. 2013. ACM.

[32] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner,
S. Apel, and G. Saake. SPL Conqueror: Toward Optimiza-
tion of Non-Functional Properties in Software Product Lines.
Software Quality Journal, 20(3):487–517, 2012.

[33] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-
Preikschat. Feature Consistency in Compile-Time-
Configurable System Software: Facing the Linux 10,000
Feature Problem. In Conf. on Computer systems. ACM, 2011.

[34] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to
Feature Models. In ICSE, pages 254–264, Washington, DC,
USA, May 2009. IEEE.

[35] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund. Abstract
Features in Feature Modeling. In SPLC, pages 191–200,
Washington, DC, USA, Aug. 2011. IEEE.

[36] P. Trinidad. Automating the Analysis of Stateful Feature Mod-
els. PhD thesis, University of Seville, 2012.

[37] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann. Re-
searching evolution in industrial plant automation: Scenarios
and documentation of the pick and place unit. Technical Re-
port TUM-AIS-TR-01-14-02, TU München, 2014.

[38] L. A. Zaid, F. Kleinermann, and O. De Troyer. Feature assem-
bly framework: Towards scalable and reusable feature models.
In VaMoS, pages 1–9, New York, NY, USA, 2011. ACM.

27

	Introduction
	Case Study: Pick and Place Unit
	Feature Models
	Interrelated Feature Models

	Deriving Implicit Constraints
	Explaining Implicit Constraints
	Evaluation
	Implementation
	Application

	Related Work
	Conclusion

