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Abstract
A software product line comprises a family of software prod-
ucts that share a common set of features. It enables customers
to compose software systems from a managed set of fea-
tures. Testing every product of a product line individually
is often infeasible due to the exponential number of possi-
ble products in the number of features. Several approaches
have been proposed to restrict the number of products to be
tested by sampling a subset of products achieving sufficient
combinatorial interaction coverage. However, existing sam-
pling algorithms do not scale well to large product lines, as
they require a considerable amount of time to generate the
samples. Moreover, samples are not available until a sam-
pling algorithm completely terminates. As testing time is
usually limited, we propose an incremental approach of prod-
uct sampling for pairwise interaction testing (called IncLing),
which enables developers to generate samples on demand
in a step-wise manner. Furthermore, IncLing uses heuristics
to efficiently achieve pairwise interaction coverage with a
reasonable number of products. We evaluated IncLing by
comparing it against existing sampling algorithms using fea-
ture models of different sizes. The results of our approach
indicate efficiency improvements for product-line testing.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Testing-Reusable Software; D.2.13 [Software
Engineering]: Reusable Software-Domain Engineering

General Terms Reliability, Verification

Keywords Software product lines, model-based testing,
combinatorial interaction testing, sampling

1. Introduction
A software product line represents a family of similar soft-
ware systems in terms of common and variable functionality.
Customers are able to automatically generate products from
a large space of features organized in a product line. The
different products of a product line share common features
and differ in others [4, 9, 13, 33]. A feature is defined as
an increment in functionality recognizable by customers [5].
Software product lines have benefits such as reduced develop-
ment cost, increased quality, and reduced time to market [4].
Numerous companies have adapted their development pro-
cess to product lines [36]. Despite the advantages product
lines bring, new challenges concerning the quality assurance
arise.

Despite the difficulty to test a single software system,
testing a product line is even more challenging due to the
potentially exponential number of products. Ideally, every
product in a product line should be tested individually, espe-
cially in case of safety-critical systems. However, it is often
infeasible to test all products in realistic product lines due to
the exponential number of products in the number of features.
Thus, several approaches have been proposed to reduce the
number of products to test [29, 31, 32]. In this regard, combi-
natorial interaction testing (CIT) is one of the most prominent
approaches that has been introduced to select a reduced, yet
sufficient subset of products to achieve a certain coverage
of feature combinations [29, 31, 32]. For instance, in T-wise
CIT, every combination of T features is required to appear in
at least one product of a sample.

Several sampling algorithms have been proposed to
achieve T-wise coverage, such as ICPL [19], CASA [15],
Chvatal [8], MoSoPoLite [30], and IPOG [24]. These al-
gorithms approximate the solutions to this constraint opti-
mization problem. However, those sampling algorithms do
not scale well to larger product lines in terms of CPU time
and memory consumption [16, 27]. In addition, even for
small sets of features these algorithms require a considerable
amount of time to compute the result, since they output the
entire sample instead of delivering intermediate products one
by one until reaching sufficient feature interaction coverage.
Johansen et al. [19] report that generating products for the
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Figure 1. Feature diagram of product line graph

Linux kernel (with 6,888 features) requires approximately
nine hours for pairwise CIT. Those samples are usually not
available until a sampling algorithm is completely terminated.

To tackle the aforementioned problems, we propose
Incremental sampLing (IncLing) to generate and test prod-
ucts one at a time to enhance the sampling efficiency, in
terms of the required time to generate a sample, as well as
testing effectiveness, in terms of the interaction coverage rate.
With IncLing, we take already generated and tested products
into account while selecting further products into the sample.
Our greedy algorithm selects the next product that covers
as many of uncovered feature combinations as possible. We
increase the diversity among products by covering dissimilar
pairwise feature combinations each time a further product
is generated to be tested [3]. Increasing the covering rate of
feature combinations might lead to a faster fault detection.
This way, we dynamically go on generating further products
into the sample until testing time is over.

We evaluate IncLing using a corpus of real-world and arti-
ficial feature models of different sizes and compare it against
four sampling algorithms and random configurations. The
results show that, on average, IncLing is capable of reducing
computation time required by existing approaches by about
70%. Furthermore, we found that for up-to the first 40%
of configurations, IncLing covers more feature interactions
than other sampling algorithms. One potential limitation of
IncLing is that it may generate more products than other sam-
pling algorithms until achieving pairwise coverage. However,
the difference is not significant. In summary, we contribute
the following:
• With IncLing, we propose an incremental sampling ap-

proach based on the principles of ICPL [19] and dissim-
ilarity [3] that keeps a similar level of effectiveness for
product-line testing, but has improved scalability.
• We implement IncLing in FeatureIDE [35].
• We evaluate IncLing against existing sampling algorithms

regarding: 1) the required computation time to generate
products while achieving a certain degree of coverage,
2) the number of generated products, and 3) feature
interaction coverage.

This paper is organized as follows. In Section 2, we briefly
introduce the necessary concepts used in this paper relating
to feature modeling and product configuration. IncLing is
presented in Section 3. In Section 4, we present the results
of our experimental evaluation of IncLing. Related work is
discussed in Section 5 and we conclude in Section 6.

2. Background
In this section, we present background on feature models,
combinatorial interaction testing in product lines, and existing
algorithms that have been proposed to generate samples.

2.1 Feature Modeling and Product Configuration
A feature model is a hierarchical structure used to define
the variability of a product line [20]. Figure 1 shows the
feature model of our running example, a graph product line.
A combination of a set of features is a valid configuration if it
does not violate the feature dependencies and the constraints
defined in the feature model. In particular, the selection
of a feature implies the selection of its parent feature. A
feature can be mandatory, which means it is required by
its parent. Otherwise, they are optional. An example of a
mandatory feature in Figure 1 is feature Edges. Furthermore,
features can be grouped into alternative or or groups. Only
one feature of an alternative group must be selected in a
configuration. For instance, a configuration can have only
one feature of Directed and Undirected. From features in
an or group, at least one of them must be involved in
a configuration. Features Number, Cycle, or both can be
involved in a configuration.

In addition to the previous dependencies between fea-
tures, other dependencies between features that are not repre-
sentable in the hierarchical structure are defined by so-called
cross-tree constraints. An example of these constraints in the
graph product line is that if a graph includes feature Cycle,
feature Directed is required to also be included in the config-
uration. As a result of feature dependencies and constraints,
a feature can be a conditionally dead or core if it is under
certain circumstances (i.e., features that must be selected or
deselected given the feature model and already fixed features
of the current configuration) [6]. For instance, if feature Undi-
rected is selected, feature Directed will be a dead feature. The
feature Directed may also be core, if feature Cycle is selected.

In this paper, we use feature models as input to our
approach to create valid configurations. As the number of
possible configurations can increase exponentially with the
number of features, CIT techniques have been proposed to
generate a subset of all valid configurations that achieves a
certain coverage criteria.

2.2 Combinatorial Interaction Testing
Combinatorial interaction testing (CIT) is an approach used
to restrict the number of products to be tested by selecting
a subset of valid configurations satisfying certain coverage
criteria [7, 29, 32]. Concerning CIT in particular, triggered
faults by erroneous interactions between at most T features
are likely to be discovered in at least one selected product. A
feature interaction occurs when one or more features modify
or influence the behavior of other features [17].

With T-wise CIT, a kind of feature-combination coverage
needs to be achieved. For instance, in pairwise CIT (i.e.,
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T=2), each valid combination of two features is required
to appear in at least one configuration of the sample. For
example, the valid combinations of feature Directed (D) and
feature Undirected (U), in our running example, are D ∧ ¬U
and ¬D ∧ U , and the invalid ones are D ∧ U and ¬D ∧ ¬U .
Each valid combination, is required to appear at least in one
of the created configurations of the sample.

Creating these configurations are instances of the cov-
ering array problem [18]. In particular, the configurations
can be represented as covering array. The main challenge of
generating covering arrays is to find the minimal number of
configurations that covers the T -wise combinations of fea-
tures, which is an NP-hard problem [14]. In addition, finding
a valid configuration in a feature model is an NP-complete
Satisfiability Problem (SAT) [12]. Numerous algorithms have
been proposed to approximate these minimal covering ar-
rays [8, 15, 18, 19]. In the following, we give an overview of
a set of existing sampling algorithms, which have been used
to sample configurations using the feature models as an input.

2.3 Covering Array Algorithms
CASA [15] uses simulated annealing to generate T-wise
covering arrays of product lines. It is a non-deterministic
algorithm where different configurations may be created in
different orders when applied multiple times to the same fea-
ture model. CASA separates the problems into two iterated
steps. The first step minimizes the number of created con-
figurations. The second step ensures that a certain degree of
coverage is achieved.

Chvatal is a heuristic algorithm proposed by Chvatal [8]
to approximate optimal solutions for the minimal covering
array. The basic version of the algorithm does not incorporate
feature dependencies. Johansen et al. [18] adapted and im-
proved the algorithm to create samples from feature models.
The steps of generating covering arrays with the Chvatal algo-
rithm are as follows. First, all T-wise feature combinations are
generated. Second, an empty configuration is created. Third,
all feature combinations are iterated to add them to the config-
uration. Each time a new combination is added to the config-
uration, the validity of this configuration, with respect to the
feature model, is checked using a SAT solver. If the configu-
ration is invalid, the combination is removed from the config-
uration. The newly created configuration is added to the final
set of configurations if it at least contains one uncovered com-
bination. The creation of configurations continues until all
valid T-wise feature combinations are covered at least once.

ICPL [19] is based on the Chvatal algorithm with several
improvements, such as identifying invalid feature combina-
tions at an early stage. It generates the T-wise covering array
more efficiently, because the parallelization of the algorithm
shortens the computation time significantly. The goal of ICPL
is to cover the T-wise combinations of features as fast as pos-
sible by covering the maximum number of uncovered feature
combinations, each time a configuration is created.

IPOG [24] is an algorithm proposed to create covering
arrays. These arrays are generated from scratch for the first
T features, then the arrays grow horizontally and vertically.
With the horizontal growth, a feature and its value are added,
while in the vertical growth, new combinations of the newly
added feature and the old ones are added to achieve the
coverage, if needed. In the following, we illustrate IPOG’s
functionality with our running example. First, the covering
array starts with one feature, e.g., GraphLibrary, and its
values ( True and False). Second, the covering array grows
horizontally by adding a new feature, e.g., Algorithms, and its
values ( True and False). In particular, we have the following
combinations of the two features, True ∧ True and False ∧
False. Third, to cover all possible combinations of the two
features, the covering array grows vertically by adding the
following combinations, True ∧ False and False ∧ True. The
horizontal and vertical growth continues until all features and
their combinations are covered.

Although there are promising approaches for generating
covering arrays, most of them do not scale well to large
feature models [25, 27] and their execution takes a consid-
erable amount of time. As a result, the Linux kernel de-
velopers use the built-in facility of the Linux kernel build
system randconfig to generate random configurations, be-
cause none of the existing sampling algorithms scale to the
feature model of the Linux kernel with over 15 thousands
features [28]. Furthermore, testers cannot start testing until
the entire sampling process has terminated, because no inter-
mediate results are reported. In this paper, we propose the
IncLing algorithm to incrementally sample products one by
one based on a greedy selection heuristics to approximate
pairwise coverage.

3. Incremental Sampling: IncLing
We propose IncLing to efficiently select configurations for
sample-based product-line testing. In this section, we present
the algorithm of IncLing in detail.

3.1 Overview of IncLing
The product-line testing process, as considered in the follow-
ing, includes creating configurations (e.g., sampling), gener-
ating products, and finally testing them. Similar to ICPL [19],
IncLing generates new products by sequentially selecting
pairs of features that are not already covered by previously se-
lected configurations. Although, our algorithm is based on the
general concept of ICPL, we propose several crucial modifica-
tions to improve the performance of the algorithm compared
to ICPL. In particular, there are four major modifications.

Incremental Approach. IncLing generates products incre-
mentally, whereas in the current implementation of ICPL, the
user has to wait until all feature combinations are covered.
The incremental nature of our algorithm has the advantage
that products can be generated and tested in parallel until
testing time is over or the desired coverage is achieved. Our
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incremental approach enables us to utilize the testing time
effectively, because particular products can be tested imme-
diately after being generated. Since particular products can
be tested immediately right after being generated, a potential
drawback of the incremental approach is that the order of the
products cannot be adapted before testing.

Detecting Invalid Combinations. Invalid combinations are
all those feature pairs that are impossible to cover due
to feature-model dependencies. IncLing removes invalid
combinations at the beginning of the sampling process. In
contrast, ICPL removes invalid combinations after it covered
a certain number of combinations [19]. The advantage of
detecting invalid combinations at the beginning is that the
algorithm has to consider only valid combinations and thus
saves computation time. The disadvantage of this step is that
it needs additional time at the beginning, which is the cost of
saving effort during the sampling process.

Feature Ranking Heuristic. IncLing uses a heuristic to
rank the list of feature pairs that are potentially being se-
lected in the current product. This heuristic is based on the
previously generated products. With each new product, this
greedy strategy tries to cover the maximum number of pair-
wise feature combinations that have not already been covered
by the previously selected products. Thus, our algorithm has
the potential advantage of covering many feature combina-
tions as fast as possible. However, since it is a greedy strategy,
the algorithm might generate more products in total to cover
all valid combinations than existing sampling algorithms.

Detecting Conditionally Dead or Core Features. Contrary
to ICPL, IncLing does not test whether both features of a
feature pair can be selected in the current product simulta-
neously, but each individually. Like ICPL, IncLing uses a
satisfiability solver to test whether it is possible to selected or
deselect a feature in the current product. ICPL also uses this
method to determine whether a combination of features can
be (de)selected simultaneously. However, it can be beneficial
to test features individually, as this detects features that are
conditionally dead or core [6]. Consequently, combinations
that include these features do not need to be considered, since
they will be covered automatically. As a result the overall
performance of the algorithm is increased.

3.2 Implementation Details of IncLing
We present the main algorithm for IncLing in pseudo-code
in Algorithm 1. After the initialization phase, we generate
products one at a time. For each product, we build a config-
uration by consecutively adding feature combinations until
the configuration is complete.

Initialization. The input of our algorithm consists of the
feature model FM, the set of products Cold that have been
already generated and tested, the desired pairwise Coverage,
and the testing Time available. The output of the algorithm
is a list of generated products to test. At the beginning, we

Algorithm 1 Main algorithm of IncLing.
1: function INCLING(FM, Cold, Coverage, T ime)
2: F ← GETFEATURES(FM)
3: freq ← EMPTYLIST

4: signum← EMPTYLIST

5: combsinitial ← GENERATECOMBINATIONS(FM)
6: combsleft ← combsinitial \

( GENERATECOMBINATIONS(Cold) ∪
GENERATEINVALIDCOMBINATIONS(FM) )

7: while ( COVEREDCOMBINATIONS( ) < Coverage ∧
PASSEDTIME( ) < Time ) do

8: FORBIDCONFIGURATIONS(FM, Cold)
9: UPDATEFREQUENCY(combsleft, freq,

signum)
10: SORT(F , freq)

11: cnew ← ∅
12: for i← 1 to |F | step 1 do
13: for j ← 0 to i step 1 do
14: combstest ← GETCOMBINATIONS(

combsleft, signum, F [i], F [j])
15: TESTCOMBINATIONS(combstest, cnew)
16: end for
17: end for
18: AUTOCOMPLETE(FM, cnew)

19: Cold ← Cold ∪ {cnew}
20: combsleft ← combsleft \ combscovered
21: GENERATEANDRETURNPRODUCT(cnew)
22: end while
23: end function

initialize all relevant variables. First, we get all features
from the feature model FM (Line 2). Second, we generate
all pairwise combinations combsinitial (Line 5). Third, we
create a list of all uncovered combinations combsleft by
removing the invalid combinations and the combinations that
are already covered in the set of configurations Cold (Line 6).

We demonstrate the single steps of our algorithm with
the help of the graph product line example (cf. Figure 1).
In this example, we get the following list of features F =
(G,E,D,U,A,N,C), where each feature is represented
by its first letter. The list of all possible pairwise feature
combinations consists of 168 elements in total. After the
removal of all invalid feature combinations, such as (D,U)
(i.e., both features cannot be chosen together) and (¬A,N)
(i.e., contradiction of a parent-child relationship), the list
contains 111 valid combinations that need to be covered (e.g.,
(D,¬U), (¬A,¬C), (C,D), ...).

Generating Products. In the main loop of the algorithm,
we build configurations until either running out of testing
time or there are no more combinations to cover. We avoid
building the same configurations by excluding the already
generated ones from the feature model (FM) via adding a
blocking clause (Line 8). Before we build a configuration, we
calculate the current signum and frequency of each feature,
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which we use for our heuristic. Frequency denotes how often
each feature occurs in the remaining feature combinations. In
Line 10, we rank features in descending order according to
their frequencies. The signum of a feature is positive, if the
feature is more often selected than deselected in the remaining
feature combinations and negative otherwise. We use the
signum to increase the diversity among configurations with
regard to feature selections (cf. Line 14).

Next, we build a new configuration (cf. Lines 11–18),
which we describe in more detail later on. For each new
configuration, we exclude all combinations that are covered
by the configuration from the list of uncovered combinations
combsleft (Line 20). Finally, we generate a product from this
configuration (Line 21), which may then be tested while the
algorithm goes to the next iteration. This process continues
until either we reach a certain degree of pairwise feature
coverage or we run out of testing time (Line 7). In our
example, the initial computation of frequency and signum
yields the following results:

Feature G E D U A N C

Frequency 155 155 161 161 162 163 162
Signum 11 11 1 -1 2 -1 -2

As we excluded all invalid feature combinations in the
initialization phase, the numbers for signum and frequency
differ from 0 and 168, which is the maximum frequency for
7 features. When we rank the feature list accordingly, we get
the list F = (N,A,C,D,U,G,E), where the first feature
has the highest frequency.

Building a Configuration. First, we create an empty con-
figuration cnew (Line 11). Then, we execute two nested loops
over the ranked feature list to generate the remaining com-
binations for each pair of features (Lines 12–17). For each
pair of features, we generate a list of uncovered combinations
using the signum for both features by calling the function
getCombinations (Line 14). We then test whether we can
cover one of these combinations within the current configu-
ration cnew by executing the function testCombinations

(Line 15).
For the first product in our example, we generate the

following combinations. The first feature pair according to
the feature ranking is N and A. In this case, the function
getCombinations returns the combination list combsleft =
((¬N,A), (N,A), (¬N,¬A)). These combinations are then
tried to be added to the current configuration.

Adding a Combination. In Algorithm 2, we give the func-
tion addCombinations. In this function, we iterate over the
given list of combinations combotest and test for each com-
bination whether it is possible to include it in the current
configuration cnew.

First, we check whether a feature from the tested com-
bination is already included in the current configuration

Algorithm 2 Tests whether a combination from the list
combstest can be added to the current configuration cnew.

1: function ADDCOMBINATIONS(combstest, cnew)
2: for all combo ∈ combstest do
3: fa ← combo[0]
4: fb ← combo[1]

5: if ({fa, fb,¬fa,¬fb} ∩ cnew 6= ∅) ∧
( ( ¬fa ∈ cnew ∨ ¬fb ∈ cnew) ∨
( fa ∈ cnew ∧ fb ∈ cnew) ∨
COVEREDCOMBINATIONS( ) < THRESHOLD( ) )

then
6: continue
7: end if

8: if fb /∈ cnew then
9: cnew ← cnew ∪ {fb}

10: if ¬ ISSATISFIABLE(cnew) then
11: cnew ← (cnew \ {fb}) ∪ {¬fb}
12: return
13: end if
14: end if
15: if fa /∈ cnew then
16: cnew ← cnew ∪ {fa}
17: end if
18: if ISSATISFIABLE(cnew) then
19: return
20: else
21: if WASUNDEFINED(fb) then
22: if WASUNDEFINED(fa) then
23: cnew ← cnew \ {fa}
24: end if
25: cnew ← cnew \ {fb}
26: else
27: cnew ← (cnew \ {fa}) ∪ {¬fa}
28: return
29: end if
30: end if
31: end for
32: end function

(Line 5). In this case, we continue with the next combination
in combotest if at least one of the following conditions is true:
cnew contains the complement of at least one feature in the
combination (i.e., the complement of feature A is ¬ A and
vice versa), the combination is already contained in cnew, or
the percentage of covered combinations is below a certain
threshold. Otherwise, we try to add the combination using a
satisfiability solver. If the current configuration cnew is not
valid, we remove the combination from the configuration and
we move to the next combination.

We use the threshold value as a mechanism to speed
up the algorithm. Before reaching a certain amount of cov-
ered feature combinations, we exclude every combination
with at least one feature in the current configuration (i.e.,
({fa, fb,¬fa,¬fb} ∩ cnew 6= ∅)), which considerably re-
duces the number of combinations that we have to check.
However, excluding feature combinations also decreases the
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degree of pairwise coverage per configuration. Thus, after
reaching the threshold, we consider all remaining feature
combinations.

In this function, we do not test the entire combination at
once, but try to add the features consecutively. We start by
adding the second feature from the combination fb to cnew
(Lines 8- 14). If cnew is no longer satisfiable, we conclude
that fb is conditionally core or dead and, thus, we add the
complement of fb to cnew and return from the function. Next,
we add the first feature fa to cnew. If cnew is still satisfiable,
we are able to cover the given combination and return from
the function. Otherwise, we have to consider two cases. First,
if fb was initially not included in cnew (i.e., undefined), we
have to remove it from cnew (Lines 21–25). In this case, the
same also applies for fa (Lines 22–24). We continue to test
the next configuration in the list. Second, if fb was included
in cnew, we know that the complement of fa has to be part of
cnew. Therefore, we add the complement of fa to cnew and
return from the function (Lines 27–28).

Regarding our example, the first input of the function is the
list of combinations combstest = ((¬N,A), (N,A),(¬N,
¬A)) and an empty configuration. We start by testing the
first configuration (¬N,A). Since none of both features are
included in the current configuration, we add A to cnew
and find that it is still satisfiable. Next, we add ¬N to
cnew. As cnew is still satisfiable, we successfully added the
combination (¬N,A) to the current configuration and return
from the function.

Continuing the execution of our algorithm, the next input
consist of the list of combinations combstest = ((¬N,¬C),
(N,¬C), (N,¬C)) and the current configuration cnew =
{¬N,A}. The feature N is already contained in the con-
figuration. Thus all combinations containing N or ¬N are
ignored. The next relevant feature pair is C and D with the
list combstest = ((¬C,D), (C,D), (¬C,¬D)). Again, we
add the second feature D to cnew and find that it is still satisfi-
able. However, when we add ¬C, the configuration becomes
unsatisfiable. Thus, we remove both features from cnew and
test the next combination (i.e., (C,D)). Given the current
configuration, it is possible to select both features and, thus,
we add them to cnew and continue with the next feature pair.
Further continuing the process results in the configuration
cnew = {¬N,A,C,D,¬U,G,E}.

3.3 IncLing in FeatureIDE
FeatureIDE [35] is an open-source framework based on
Eclipse. It covers the whole development process and incorpo-
rates tools for the implementation of product lines into an in-
tegrated development environment. With FeatureIDE, feature
models can be constructed by adding, editing, and removing
features. In this paper, we focus on the FeatureIDE function-
ality related to configuration creation. Using FeatureIDE, the
user can create configurations manually. However, creating
a set of configurations manually is not efficient and should
be automated. In previous work, some of us extended Fea-

tureIDE to generate all valid products and prioritize them
based on different criteria [1–3]. The limitation of this is that
it is not feasible to generate all valid products for large prod-
uct lines. Hence, we integrated sampling algorithms CASA,
Chvatal, and ICPL into FeatureIDE in order to generate a
sample of products while achieving a certain degree of cover-
age [3]. In this work, we extend FeatureIDE by implementing
the IncLing algorithm. The new extension allows the user to
generate a specific number of products or generate products
within a restricted amount of time. The implementation of
the algorithm is publicly available to be used for product
generation or in upcoming evaluations.1

4. Evaluation
We evaluate IncLing against existing sampling algorithms and
random configurations with respect to three criteria: sampling
efficiency, testing efficiency, and testing effectiveness. With
sampling efficiency, we refer to the aggregated computation
time of the sampling algorithms to achieve pairwise coverage.
Testing efficiency counts the number of products generated
by the sampling algorithms to achieve pairwise coverage. For
testing effectiveness, we consider the increase of pairwise
interaction coverage achieved by the product order generated
by our approach compared to the product order returned by
the other approaches. In our evaluation, we focus on the
following research questions.
• RQ1: Does IncLing increase the average sampling effi-

ciency for achieving pairwise coverage compared to exist-
ing sampling algorithms?
• RQ2: Does IncLing decrease product-line testing effi-

ciency compared to existing sampling algorithms?
• RQ3: Does IncLing decrease product-line testing effec-

tiveness compared to random configurations and existing
sampling algorithms?

4.1 Experiment Settings
In the experiments, we consider real and artificial feature
models of different sizes. The real feature models consist
of up-to 6,888 features. The size of the artificial feature
models, which we use in our experiment, ranges between 15
and 5,542 features. In Table 1, we summarize the properties
of each feature model. We report for each feature model
the number of features, number of constraints, and ratio
of the number of distinct features in cross-tree constraints
to the number of features (CTCR). To evaluate IncLing,
we generate configurations that are required to achieve the
pairwise coverage criterion. For the threshold mentioned
in Section 3.2, we use 99%. We repeated the experiment
for each setting five times and calculated the average in
order to reduce the impact of outliers in our measurements.
As exception for random configurations, we conducted the
experiment 100 times to additionally mitigate the effect of
random impacts. For a fair comparison, we set the number

1 http://www.tinyurl.com/IncrementalSampling
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Feature Model Features #Constraints CTCR

Email 10 3 50%
Violet 88 27 66%
BerkeleyDB1 53 20 42%
BerkeleyDB2 99 68 82%
Dell 46 110 80%
EShopFIDE 192 21 10%
EShopSplot 287 21 12%
GPL 27 16 63%
SmartHome22 60 2 6%
BattleofTanks 144 0 0%
FM Test 168 46 28%
BankingSoftware 176 4 2%
Electronic Shopping 290 21 11%
DMIS 366 192 93%
eCos 3.0 i386pc 1,245 2,478 99%
FreeBSD kernel 8.0.0 1,369 14,295 93%
Automotive1 2,513 2,833 28%
Linux 2 6 28 6 6,888 6,847 99%
10xAFM15 15 2.6 19%
10xAFM50 50 9.7 17%
10xAFM100 100 20 17%
10xAFM200 200 39 17%
10xAFM500 500 100 17%
10xAFM1K 1,000 100 14%
1xAFM5K 5,542 300 11%

Table 1. Feature models used in our evaluation, (CTCR)
stands for cross-tree constraints ratio; The values next
to the artificial feature models 10xAFM15, 10xAFM50,
10xAFM100, 10xAFM200, 10xAFM500, and 10xAFM1000
represent the average values over 10 feature models.

of created configurations for random configurations to the
same number of configurations as created with IncLing for
the respective feature model.

In order to answer the aforementioned questions, we con-
ducted experiments using feature models with different sizes
in terms of number of features and different complexity
in terms of CTCR. We performed the experiments using a
PC with an Intel Core i5-4670 CPU @ 3.40 GHz, 16 GB
RAM, and Windows 7. In the next section, we discuss the
experiment settings.

4.2 Results and Discussion
Sampling Efficiency (RQ1). To answer RQ1, we compare
our approach, with respect to the required time to achieve
the pairwise coverage, against existing sampling algorithms,
namely CASA [15], Chvatal [8], ICPL [19], and IPOG [24].

To measure whether IncLing improves sampling time, we
calculate the relative time decrease compared to existing
algorithms with the following formula:

TimeDecrease = (1− TimeIncLing

TimeExisting
) · 100% (1)

where TimeIncLing is the sampling time of IncLing and
TimeExisting is the time of an existing sampling algorithm.
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Figure 2. The distribution and average of time decrease
percentage for our approach to sampling algorithms over
all feature models. (CH: Chvatal algorithm)

In Table 2, we show the time and the number of configu-
rations that are required to achieve pairwise coverage using
IncLing compared to existing sampling algorithms. We ob-
served that some of these sampling algorithms do not scale
well. We stopped computation that required more than 24
hours. We refer to these cases in Table 2 as (*).

Examining the values of the required time to achieve the
pairwise coverage for each feature model, we observe that
IncLing outperforms the other sampling algorithms for all
feature models, except for feature model E-mail (with 10
features), where the computation sampling time of IncLing
is equal to the computation sampling time of Chvatal. For
instance, for feature model GPL (27 features), we notice that
the required time to cover all pairwise combinations for In-
cLing is 0.06 second, while the sampling algorithms CASA,
Chvatal, ICPL, and IPOG require 14.58, 0.24, 0.15, and
173.65 seconds. That is, with IncLing, we can save 99.6%,
75%, 60%, and 99.9% of CASA’s, Chvatal’s, ICPL’s, and
IPOG’s sampling time, respectively. For feature model Auto-
motive1, the required time for IncLing is 8.6 minutes. Sam-
pling algorithms ICPL and Chvatal require 126.72 minutes
and 939.08 minutes with 93% and 99.1% decrease of its sam-
pling time, respectively. For the feature model of the Linux
kernel, only IncLing and ICPL scale to this large feature
model. The times required for IncLing and ICPL to achieve
the pairwise coverage are 0.92 hours and 5.2 hours, respec-
tively. In particular, 82.5% sampling time can be saved when
IncLing is used instead of ICPL.

In Figure 2, we show the distribution of relative time
decrease of existing sampling algorithms when using IncLing
instead (cf. Equation 1). We observe an improvement of
our approach compared to the other sampling algorithms. If
IncLing is used, the median values of the decrease of time for
existing sampling algorithms range between 65% and 99.9%.
The average time decrease over all feature models shows
that 99.1%, 70%, 91.8%, and 99.9% of CASA’s, ICPL’s,
Chvatal’s, and IPOG’s sampling time can be saved using
IncLing.

150



Feature Model CASA Chvatal ICPL IPOG IncLing

Conf. Time Conf. Time Conf. Time Conf. Time Conf. Time

Email 6.0 0.13 7.0 0.01 7.0 0.03 8.0 0.46 9.0 0.01
Violet 22.0 59.75 27.0 1.38 28.0 0.31 28.0 4841.02 25.0 0.12
BerkeleyDB1 19.6 47.60 25.0 0.59 24.0 0.08 22.0 664.22 24.0 0.03
BerkeleyDB2 19.0 5240.35 24.0 1.61 21.0 0.21 22.0 (*) (*) 0.05
Dell 33.0 54.95 38.0 0.18 37.0 0.10 43.0 2562.60 43.0 0.04
EShopFIDE 24.0 4789.30 22.0 23.16 21.0 1.20 (*) (*) 23.0 0.30
EShopSplot (*) (*) 23.0 15.57 21.0 0.72 (*) (*) 23.0 0.22
GPL 15.0 14.58 20.0 0.24 19.0 0.15 18.0 173.65 22.0 0.06
SmartHome22 14.8 14.40 18.0 0.32 17.0 0.05 17.0 169.56 17.0 0.03
BattleofTanks 664.0 16955.84 448.0 11.72 460.0 3.38 (*) (*) 650.0 2.75
FM Test 40.0 11945.02 47.0 4.05 45.0 0.62 51.0 16997.68 42.0 0.20
BankingSoftware 37.0 1423.98 41.0 4.13 42.0 0.48 49.0 19187.96 47.0 0.15
ElectronicShoping 31.4 12512.83 23.0 16.08 24.0 0.84 26.0 88680.47 22.0 0.22
DMIS 27.0 6969.84 27.0 26.19 29.0 1.66 (*) (*) 26.0 0.47
eCos 3.0 i386pc (*) (*) 66.0 1334.02 63.0 78.92 (*) (*) 64.0 22.90
FreeBSD kernel 8.0.0 (*) (*) 77.0 2155.77 77.0 105.28 (*) (*) 75.0 32.68
Automotive1 (*) (*) 913.0 56344.51 913.0 7602.94 (*) (*) 946.0 510.91
Linux 2 6 28 6 (*) (*) (*) (*) 479.0 18805.14 (*) (*) 450.0 3296.41
10xAFM15 11.0 0.77 12.0 0.02 12.0 0.02 13.2 3.20 16.7 0.01
10xAFM50 24.0 30.84 26.9 0.27 26.6 0.06 28.0 643.10 28.0 0.02
10xAFM100 49.4 3066.64 56.0 1.45 56.6 0.27 63.5 11991.00 58.5 0.09
10xAFM200 (*) (*) 88.1 9.64 89 1.19 (*) (*) 91.7 0.43
10xAFM500 (*) (*) 185.2 189.4 189.1 14.97 (*) (*) 186.4 4.76
10xAFM1K (*) (*) 346.7 1744.55 346.7 228.98 (*) (*) 340.2 35.66
1xAFM5K (*) (*) (*) (*) 685.0 35172.81 (*) (*) 607.0 1870.72

Table 2. Comparison of sampling with CASA, Chvatal, ICPL, and IPOG using feature models of different sizes. The values
next to the artificial feature models 10xAFM15, 10xAFM50, 10xAFM100, 10xAFM200, 10xAFM500, and 10xAFM1000
represent the average values over 10 feature models. Conf. stands for configurations. time is measured in second, and * indicates
that computation did not finish within 24 hours

We conclude from the results in Table 2 and Figure 2
that IncLing is more efficient than the existing sampling
algorithms with respect to the required time to achieve the
pairwise coverage. In future work, we plan to parallelize the
IncLing algorithm, which may improve the performance of
the algorithm even more.

Testing Efficiency (RQ2). Regarding RQ2, we expect that
we need more products to achieve pairwise coverage com-
pared to existing sampling algorithms. We collected the num-
ber of generated products for each feature model to achieve
pairwise coverage. In Table 2, where we report the number
of products and the required time to generate them for each
feature model, we highlight the minimum ones in bold font.
As illustrated in Table 2, CASA generates the least number
of products for most feature models that it was able to sample
(12 out of 16). In addition, we observe that IPOG does not
generate the minimum number of products for any feature
model. In the case of Chvatal, ICPL, and IncLing, they gener-
ate the minimum number of products for 3, 4, and 7 feature
models, respectively.

Moreover, we conducted a Mann-Whitney U Test to
investigate whether the differences between IncLing and the
existing sampling algorithms are significant regarding the

number of generated products for each feature model. The
Mann-Whitney U Test is a non-parametric statistical test for
assessing whether two independent samples are larger than
the other. From this test, we obtain a probability value called
p-value, which represents the probability that both samples
are equal. The difference is significant if the p-value is lower
than 0.05. In our results, we observe that the difference is not
significant between IncLing and CASA, Chvatal, ICPL, and
IPOG with p-values 0.12, 0.70, 0.65, and 0.71, respectively.
While it is not our primary goal to generate the minimum
number of products, p-values above indicate that all sampling
algorithms have the same testing efficiency, because the
differences are not significant.

Testing Effectiveness (RQ3). To answer RQ3, we measure
the potential loss of testing effectiveness of IncLing with
respect to the increase of interaction coverage achieved by
the product order compared to random configurations and the
existing sampling algorithms. In Figure 3, we show the per-
centage of covered combinations to the percentage of configu-
rations for the 38 feature models that could be sampled by all
evaluated algorithms. From Figure 3, we observe that on aver-
age for the first 40% of the generated configurations, IncLing
covers more combinations than the other sampling algorithms.
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Figure 3. Average percentage of covered combinations over
all feature models, with all existing sampling algorithms, in
addition to random configurations.

1 2 5 10 20 50 100

40

50

60

70

80

90

100

  % configurations

%
 o

f c
ov

er
ed

 c
om

bi
na

tio
ns

Chvatal
IncLing
ICPL
Random

Figure 4. Average percentage of covered combinations for
feature models between 200 and 3000 features using IncLing,
ICPL, Chvatal, and random configurations.

IPOG covers more combinations than CASA, Chvatal, ICPL,
and random configurations until approximately 8%. However,
with random, we do not achieve 100% coverage. Surprisingly,
CASA performs worse than all other sampling algorithms
and even than random configurations.

In Figure 4, we show the average percentage of covered
feature combinations for the relative number of configurations
generated by Chvatal, IncLing, ICPL, and random configu-
rations considering only feature models between 200 and
3,000 features. We find that IncLing covers more feature
combinations for the first 3% of configurations than Chvatal,
ICPL, and random. For Chvatal and ICPL, we notice that they
behave almost similar. In case of random configurations, it
does not compete with the other sampling algorithms. From
Figures 3 and 4, we observe a reduction of the covered com-
binations by IncLing for the first generated configurations.
However, 3% of the configurations is still an acceptable rate.
For instance, for product line Automotive1, 3% means that
IncLing covers more feature combinations for the first 27 con-
figurations (the total number is 913) than the other sampling
algorithms.

In Figures 5 and 6, we show the aggregated number of
covered combinations of product lines AFM5K and the Linux
kernel for IncLing, ICPL, and random configurations. Note
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Figure 5. Number of covered combinations for the feature
model of Linux kernel (6,888 features) using IncLing, ICPL,
and random configurations.
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Figure 6. Number of covered combinations for an artificial
feature model (5,542 features) using IncLing, ICPL, and
random configurations.

that IncLing and ICPL are the only sampling algorithms
scaling to these large feature models. The results show that
IncLing covers more feature combinations in the first 26
and three configurations for AFM5K and Linux, respectively.
We argue that increasing the diversity among configurations,
which is intended in IncLing, yields to cover more feature
combinations as early as possible. As a result, many faults
may be detected more quickly, which will enhance the testing
effectiveness. To answer RQ3, we show that there is no loss in
testing effectiveness with respect to the interaction coverage
of IncLing. In fact, we found that IncLing increases the testing
effectiveness regarding the interaction coverage, because up
to the first 40% of the generated configurations by IncLing
cover more feature combinations than all existing sampling
algorithms.

4.3 Threats to Validity
Internal Validity There is a potential threat that may affect
the results with random configurations. To mitigate random
effects, we conducted the experiments 100 times. Another
internal threat is that we compared IncLing to the existing
sampling algorithms. Some of these sampling algorithms,
such as CASA, are known to be non-deterministic. Moreover,
in some cases we also observed a non-deterministic behavior
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for Chvatal and ICPL. To minimize the impact of this threat,
we repeated all experiments five times.

External Validity We cannot guaranty that the artificial
feature models we used in our evaluation are able to simulate
realistic real-world product lines. What mitigates this threat
is that we evaluate IncLing using artificial feature models
of different sizes and complexity, which already served
as a benchmark to evaluate product-line testing [16, 18,
19]. In addition, we used real-world feature models, which
represent the variability of complex product lines, such as the
Linux kernel with 6,888 features. Another threat relates to
interaction coverage, which is considered, in this paper, as a
testing effectiveness measure.

5. Related Work
Several approaches have been proposed to sample sets of
products [7, 10, 11, 18, 19, 21, 26, 31, 34]. Combinato-
rial interaction testing (CIT) is a promising approach that
has been used to select a subset of products [23]. Oster et
al. [29] present pairwise testing to generate products from
the feature models. Moreover, they take pre-selected prod-
ucts (i.e., current products) into account. Similar to their
approach, we consider pairwise testing to generate products
based on feature models. However, we generate the products
incrementally and efficiently. Perrouin et al. [32] propose
a non-deterministic approach to generate T -wise products
using Alloy. However, their approach does not scale to large
feature models. With our approach, we did not face scalability
problems for large feature models.

Johansen et al. [18] adopt the Chvatal algorithm [8] to
generate covering arrays from feature models. They propose
ICPL based on Chvatal with several enhancements, such as
parallelizing the process of generating covering arrays, which
reduces the computation time significantly [19]. ICPL tries
to cover as many uncovered feature combinations as possi-
ble with each configuration added to the covering array. The
configurations are included to the covering arrays until all
valid combinations of features are covered. Although the pro-
cess of generating the covering arrays is incremental, with
the current implementation of the algorithm, the users have
to wait until all valid combinations are covered to generate
and test products. With IncLing, we generate the configura-
tions incrementally. Despite we are considering the pairwise
coverage, we can also generate configurations within a given
testing time. Furthermore, with our approach, we are trying to
increase the diversity among the created configurations. In ad-
dition, the results show that the performance of our approach
potentially outperforms the performance of ICPL, especially
for large feature models.

Garvin et al. [15] generate covering arrays using simu-
lated annealing. The algorithm does not scale to large feature
models and it takes a long time to generate the covering ar-
rays. With our approach, the performance outperforms CASA.
However, considering a search-based algorithm may help our

approach to avoid being trapped in local optima. Hence, in
future, we plan to investigate how we can get benefit from
search-based techniques. Henard et al. [16] propose an alter-
native to CIT by employing a search-based approach to sam-
ple products. They propose the similarity notion to increase
the interaction coverage for the generated products. Similar
to their approach, with IncLing, we can test a fixed number of
products or test as many product as possible in a fixed time.
In addition, with our approach, we consider the pairwise CIT
to sample products. Moreover, our approach is deterministic,
which is not the case with this search-based approach, where
different products might be generated in each run.

Kowal et al. [22] propose to provide an additional infor-
mation to feature model about the actual source of feature
interaction. They use this information to reduce the number
of products that need to be tested. However, the additional
information is typically not available. With IncLing, we are
trying not only to reduce the number of products, but also to
generate them incrementally and efficiently.

Medeiros et al. [27] compare ten sampling algorithms
regarding the size of the samples and their capability of fault
detection. They report that existing sampling algorithms do
not scale well, as they require a considerable amount of time.
With IncLing, we show that its efficiency outperforms all
sampling algorithms for pairwise coverage.

6. Conclusion and Future Work
Several approaches have been proposed to sample a set of
products as representatives while achieving a certain degree
of coverage. However, existing sampling algorithms require
a considerable amount of time to sample products, which
may not all be tested due to the limitation of testing time.
Thus, we propose IncLing to sample products one at a time.
With our approach, there is no need to wait for a long time to
have the first samples. Beside generating a fixed number of
products withing a given time, we can achieve a pairwise cov-
erage efficiently. In particular, the results show improvements
compared to existing sampling algorithms with respect to the
required time to compute samples. Regarding the number of
generated products, the differences between IncLing and ex-
isting sampling algorithms are not significant. Moreover, In-
cLing covers as many feature interactions as soon as possible
by increasing the diversity among the created configurations,
which is likely to enhance product-line testing effectiveness.

In future work, we plan to consider search-based ap-
proaches to avoid being trapped in local optima. In addi-
tion, we plan to parallelize IncLing in order to enhance its
efficiency even further.
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