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ABSTRACT
Software product lines are used to efficiently develop and
verify similar software products. While they focus on reuse
of artifacts between products, a product line may also be
reused itself in other product lines. A challenge with such
dependent product lines is evolution; every change in a prod-
uct line may influence all dependent product lines. With
variability hiding, we aim to hide certain features and their
artifacts in dependent product lines. In prior work, we fo-
cused on feature models and implementation artifacts. We
build on this by discussing how variability hiding can be ex-
tended to specifications in terms of method contracts. We
illustrate variability hiding in contracts by means of a run-
ning example and share our insights with preliminary exper-
iments on the benefits for formal verification. In particular,
we find that not every change in a certain product line re-
quires a re-verification of other dependent product lines.

CCS Concepts
•Software and its engineering → Software product
lines; Formal software verification; Feature interac-
tion; Abstraction, modeling and modularity;

Keywords
Multi product line, deductive verification, method contracts

1. INTRODUCTION
Software product-line engineering is a paradigm to effi-

ciently develop similar software systems [2]. A software
product line refers to a set of software products that share
features and software artifacts. Typically, each software
product is generated automatically given a selection of fea-
tures (i.e., configuration), whereas valid combinations of fea-
tures are documented in a feature model [3]. The generation
causes reduced development effort and at the same time,
sharing artifacts across software products reduces the veri-
fication effort [25]. A promising strategy to verify product
lines with existing verifiers is variability encoding [29]; the
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compile-time variability of a product line is translated into
runtime variability for verification purposes.

The growing adoption of product lines naturally leads to
the challenge of reusing product lines themselves. A prod-
uct line facilitates reuse between products, whereas, for a
certain product line, we may want to reuse another prod-
uct line or parts thereof. A characteristic of such dependent
product lines (aka. multi product lines [13]) is that the con-
figuration of one product line influences the configuration of
another product line. In particular, it is often not sufficient
to just reuse one product of a product line for all products
of another. Whereas dependencies between features can be
modeled with dependent feature models [14, 23], the ver-
ification of feature’s implementation is challenging due to
evolution: Each change of an artifact in one product line
can potentially break any product of other product lines.
Even worse, product-line evolution is more frequent than
for single systems, as the evolution of one artifact may lead
to the evolution of multiple products.

With variability hiding, we propose to hide unnecessary
details of one product line for other product lines. Thus,
in principle, variability hiding for product lines is similar to
information hiding in programming languages, but the vari-
ability itself accompanies several new challenges. In prior
work, we proposed to face the challenges by means of inter-
faces on multiple abstraction levels [21]. Whereas we inves-
tigated feature-model interfaces to hide features and their
dependencies in feature models [20] and feature-context in-
terfaces to hide implementation details based on the reuse
context [22], this work facilitates the efficient verification of
dependent product lines under evolution. In particular, we
make the following contributions:
• Using feature-oriented contracts for feature-module spec-

ification [24], we discuss three strategies to hide features.
• We evaluate these strategies when verifying two depen-

dent product lines, a bank account and a bank appli-
cation, whereas variability encoding and verification is
performed with FeatureIDE and KeY.
• We share our insights with applying variability hiding to

contracts and discuss open challenges.

2. BACKGROUND
By means of a running example, we briefly introduce fea-

ture models, feature modules, feature-oriented contracts, as
well as variability encoding, all required for our discussions.

2.1 Feature Model of Our Running Example
Typically, the features of a product line are not all inde-

pendent of each other. Thus, using feature models, we can

http://dx.doi.org/10.1145/2866614.2866628


Figure 1: Features in product line BankAccount

specify their valid combinations. A feature model (aka. fea-
ture diagram) consists of a hierarchical structure and cross-
tree constraints [3, 2]. The selection of a feature always
requires the selection of its parent feature, whereas the root
feature is always selected. Although there are several types
of feature groups, for the sake of our example it is sufficient
to know that optional features may or may not be selected
when their parent is selected. Cross-tree constraints can be
based on arbitrary propositional formulas [3].

In Figure 1, we show the feature model of a bank-account
software (BankAccount), which provides specialized prod-
ucts to manage a bank account. Feature BankAccount is
the root feature and provides basic storing functionality for
all products. There are optional features to define a maxi-
mal daily withdrawal (DailyLimit), to calculate interests for
the account (Interest), to predict the expected interest (In-
terestEstimation), to withdraw more money than available
up to a certain limit (Overdraft), to calculate whether the
customer may get a credit (CreditWorthiness), to lock the
account (Lock), and to log all changes (Logging). All fea-
tures are independent of each other except that BankAccount
is always selected and InterestEstimation requires Interest.

For verification purposes, feature models are often trans-
lated into propositional formulas, in which each feature is
mapped to a boolean variable [6]. For our running example,
we can automatically derive the formula BankAccount ∧
(InterestEstimation⇒ Interest).

2.2 Feature Modules
We illustrate our approach with feature-oriented program-

ming, as most tool support for our approach is already avail-
able [27]. With feature-oriented programming, products are
derived automatically by composing modules for each se-
lected feature [4, 19]. Software artifacts concerning a feature
are encapsulated in a feature module. In particular, a fea-
ture module may introduce new classes or extend existing
classes by adding or refining methods and fields.

In Figure 2, we illustrate feature modules of product line
BankAccount, whereas feature modules are represented by
rows and classes by columns. In our example is just one class
Account being introduced in feature module BankAccount
and refined by all other feature modules. Refinements add
new methods, such as method calculateInterest in feature
Interest, and refine existing methods, such as method update
in feature DailyLimit (fields are omitted for brevity).

In Figure 3, we show an excerpt of feature module BankAc-
count introducing class Account (ignore comments for now).
The class provides a constructor, a field to store and a
method to update the current balance. In Figure 4, we show
the extension made, if features Overdraft and DailyLimit are
selected. In detail, Overdraft overrides method getOver-
draftLimit and returns -5000 instead of 0. Feature Dai-
lyLimit introduces constant DAILY_LIMIT storing the maxi-
mum daily withdrawal of an account and withdraw to store
the current withdrawal of the day. Additionally, the method
update extends the related method of feature BankAccount

Figure 2: Modules of product line BankAccount

using the keyword original and makes sure that the with-
drawal is updated and does not exceed the limit.

2.3 Feature-Oriented Contracts
Design by contract is a methodology to increase the relia-

bility of software systems with code-level specifications [18].
In particular, a contract is assigned to a method and defines
preconditions and postconditions, which are predicates that
define valid states before and after method execution [12]. In
addition, class invariants allow to specify constraints on the
state of objects and classes. For illustration, we use the Java
Modeling Language (JML) to define contracts and invari-
ants, which can be verified with deductive verification [5].
In deductive verification, Java program and JML specifi-
cation are translated into logic to prove that the program
establishes the specification for all possible inputs [5].

In Figure 3, we exemplify a JML specification. An in-
variant specifies that field balance is not lower than the
overdraft limit (cf. Line 2). The constructor’s postcondition
states that the balance of a newly created account object is
zero. For method update, we omitted the precondition true
and the postcondition defines that the balance is only up-
dated, if the return value is true. Keyword result refers to
the return value, whereas old refers to the state of field bal-
ance prior to method execution. Moreover, keyword pure
indicates that method getOverdraftLimit is side-effect free,
which is necessary to call this method within contracts [5].

While JML is designed for Java, we can use it for fea-
ture modules similarly [24]. In Figure 4, feature module

1 class Account {
2 //@ invariant balance >= getOverdraftLimit ();
3 int balance = 0;
4 //@ ensures balance == 0;
5 Account () { }
6 //@ ensures
7 //@ (!\ result ==> balance == \old(balance)) &&
8 //@ (\ result ==> balance == \old(balance) + x);
9 boolean update(int x) {

10 if (balance + x < getOverdraftLimit ())
11 return false;
12 balance += x;
13 return true;
14 }
15 //@ ensures \result == 0;
16 int /*@ pure @*/ getOverdraftLimit () { return 0; }
17 }

Figure 3: Feature module BankAccount



1 class Account {
2 //@ ensures \result == -5000;
3 int /*@ pure @*/ getOverdraftLimit (){ return -5000; }
4 }

5 class Account {
6 //@ invariant withdraw >= DAILY_LIMIT;
7 final static int DAILY_LIMIT = -1000;
8 int withdraw = 0;
9 //@ ensures \original;

10 //@ ensures !\ result ==> withdraw == \old(withdraw);
11 //@ ensures \result ==> withdraw <= \old(withdraw);
12 boolean update(int x) {
13 int newWithdraw = withdraw;
14 if (x < 0) {
15 newWithdraw += x;
16 if (newWithdraw < DAILY_LIMIT) return false;
17 }
18 if (! original(x)) return false;
19 withdraw = newWithdraw;
20 return true;
21 }
22 }

Figure 4: Feature modules Overdraft and DailyLimit

1 class Account {
2 //@ invariant bankAccount && (! interestEstimation
3 //@ || interest);
4 boolean bankAccount , dailyLimit , interest ,
5 interestEstimation , overdraft , [...];
6 //@ invariant balance >= getOverdraftLimit ();
7 int balance = 0;
8 //@ ensures balance == 0;
9 Account () { }

10 //@ invariant dailylimit ==>
11 //@ withdraw >= DAILY_LIMIT;
12 final static int DAILY_LIMIT = -1000;
13 int withdraw = 0;
14 //@ ensures
15 //@ (!\ result ==> balance == \old(balance)) &&
16 //@ (\ result ==> balance == \old(balance) + x);
17 //@ ensures dailylimit ==>
18 //@ ((!\ result ==> withdraw == \old(withdraw)) &&
19 //@ (\ result ==> withdraw <= \old(withdraw)));
20 boolean update(int x) {
21 if (! dailylimit) return update_BankAccount(x);
22 int newWithdraw = withdraw;
23 if (x < 0) {
24 newWithdraw += x;
25 if (newWithdraw < DAILY_LIMIT) return false;
26 }
27 if (! update_BankAccount(x)) return false;
28 withdraw = newWithdraw;
29 return true;
30 }
31 boolean update_BankAccount(int x) { [...] }
32 //@ ensures !overdraft ==> \result == 0;
33 //@ ensures overdraft ==> \result == -5000;
34 int /*@ pure @*/ getOverdraftLimit (){
35 if (! overdraft) return 0;
36 return -5000;
37 }
38 }

Figure 5: Variability encoding for class Account

Overdraft specifies a new contract, which completely over-
rides the contract defined in BankAccount. In contrast, fea-
ture module DailyLimit explicitly reuses the postcondition
of method update in BankAccount with keyword original.

2.4 Variability Encoding
A common strategy to reuse existing verification tools for

product lines is variability encoding [29]. Using variability
encoding, the compile-time variability of feature modules
is translated into a single product with runtime variability,
called metaproduct. As result, we just have to verify the

metaproduct instead of verifying the product for each fea-
ture combination in isolation. In particular, variability en-
coding can also be applied to feature-oriented contracts [27].

In Figure 5, we illustrate the metaproduct for our running
example. The metaproduct contains all fields and methods
of the feature modules. A boolean variable is introduced
for each feature to encode the selection state and to switch
between different implementations. Different implementa-
tions of a certain method are either inlined as for method
getOverdraftLimit (Lines 35–36) or the methods are re-
named as method update_BankAccount. The return value
of method getOverdraftLimit depends on the value of the
new variable overdraft. In method update, the first state-
ment dispatches between the implementation of feature Dai-
lyLimit (Lines 22–29) and feature BankAccount (Line 31).

Similarly, contracts that do not apply to all products are
translated with an implication stating that the predicate
only is established if the feature is selected. Examples are
the class invariant and postconditions of feature DailyLimit.
To only verify feature combinations that are valid according
to the feature model, we introduce an invariant (cf. Lines 2–
3) excluding other combinations (cf. Section 2.1).

3. PROBLEM STATEMENT
Assume we aim to develop a product line BankApplication

with similar features as product line BankAccount. In par-
ticular, product line BankApplication has an additional fea-
ture called Transaction, which allows one to transfer money
from one account to another in an atomic way. Furthermore,
it provides handling for features DailyLimit and Interest,
which are necessary when a new day or year is reached (e.g.,
interests are added to accounts). Besides this additional be-
havior, we need functionality of product line BankAccount.

For product line BankAccount, we specified features and
their dependencies in a feature model, implemented each fea-
ture in a feature module, specified code members by feature-
oriented contracts, and verified altogether by means of vari-
ability encoding. Ideally, for product line BankApplication,
we can reuse existing development and verification results
of product line BankAccount. However, there are numerous
challenges involved with such dependent product lines.

The first challenge is how to reuse the feature model of
product line BankAccount. In principle, we could reuse
the complete feature model by means of aggregation [23].
However, then every change of feature model for BankAc-
count requires to analyze the feature model for BankAp-
plication again. Even worse, each change in the feature
model influences variability encoding and, thus, requires a
re-verification of BankApplication. In prior work [20], we
proposed feature-model interfaces to hide features and their
dependencies that are not relevant. In short, given a fea-
ture model and a set of features to remove, we can calculate
and reuse a feature-model interface, which is a feature model
itself that maintains all transitive dependencies.

In Figure 6, we illustrate the feature model for BankAp-
plication, whereas the feature-model interface is highlighted
using dashed lines. The feature model contains the features
Transaction, DailyLimit, and Interest due to their added be-
havior described above. Feature Lock is included addition-
ally, because we have to lock an account during transactions,
which is modeled as a cross-tree constraint.

As feature-model interfaces are crucial for our discussions,
we give a further example in Figure 7. It is different from
our running example only in an artificial requires constraint
between feature DailyLimit and InterestEstimation. With



Figure 6: Features in product line BankApplication

Figure 7: Feature-model interfaces preserve transi-
tive constrains over hidden features

this slight change, a feature-model interface hiding feature
InterestEstimation contains a transitive constraint between
feature DailyLimit and Interest. That is, the interface does
not remove any constraints and describes the same configu-
rations, but with a possibly reduced set of features. A for-
malization of feature-model interfaces and proofs of those
properties are described elsewhere [20].

Assuming a feature-model interface as given, a further
challenge is to retrieve accessible implementation artifacts
(e.g., methods) for product line BankApplication. In Fig-
ure 8, we illustrate classes added by product line BankAp-
plication and their decomposition into features. Retrieving
available artifacts is especially challenging, as it may depend
on the context. For example, when implementing method
transfer in feature module Transaction, we can safely call
method lock introduced in feature module Lock due to the
cross-tree constraint Lock⇒Transaction (cf. Figure 6). By
contrast, method credit of feature module CreditWorthi-
ness is not accessible. In prior work, we addressed this chal-
lenge by introducing feature-context interfaces [22], which
automatically present accessible artifacts related to an im-
plementation context. However, it is not clear how to reuse
specification and verification effort.

While feature-model interfaces and feature-context inter-
faces hide features and implementation artifacts, it is still
open how to take advantage of hiding during verification.
We illustrate the challenge of verifying product line BankAp-
plication using method transfer of class Transaction in
Figure 9. Method transfer calls method update of class
Account from the dependent product line BankAccount. To
verify method transfer, we can use the contracts of method
update in the metaproduct and, thus, abstract from the ac-
tual implementation of method update with deductive ver-

Figure 8: Modules of product line BankApplication

1 boolean transfer(Account src ,
2 Account dest , int amount) {
3 if (!lock(src , dest)) return false;
4 try {
5 if (amount <= 0) return false;
6 if (!src.update(-amount)) return false;
7 if (!dest.update(amount)) {
8 src.undoUpdate(-amount);
9 return false;

10 }
11 return true;
12 } finally { src.unLock (); dest.unLock (); }
13 }

Figure 9: Method transfer of class Transaction

ification [5]. However, in contrast to our example of Fig-
ure 5, the metaproduct is based on all features and, thus, it
also contains the contracts of feature Logging (cf. Figure 2).
Consequently, the metaproduct refers to a feature, which
we decided to hide with a feature-model interface. Adding
the feature Logging to the feature-model interface is not in-
tended, as it reveals details about the implementation and
specification of product line BankAccount, which are not re-
quired for verifying product line BankApplication.

4. VARIABILITY HIDING IN CONTRACTS
Feature-model interfaces hide certain features and their

dependencies [20], whereas feature-context interfaces hide
unavailable implementation artifacts based on feature de-
pendencies [22]. Both have in common to hide some of the
variability of dependent product lines to support their evo-
lution. With variability hiding, we refer to their common
principle of applying information hiding to variability. In
this paper, we apply variability hiding to specifications for
efficient verification of dependent product lines under evolu-
tion. In particular, we extend our previous work on feature-
model interfaces and feature-context interfaces by behavioral
product-line interfaces, which hide features from contracts to
ease the verification process.

4.1 Variability Hiding and Potential Benefits
Our goal is to hide all features in contracts that are not in

the feature-model interface. For example, with the feature-
model interface in Figure 6, contracts can only refer to the
features BankAccount, Interest, DailyLimit, and Lock. With
hiding, we verify a product line for all valid configurations
in the feature-model interface, whereas each of them repre-
sents one or more valid configurations of the reused product
line [20]. An underlying assumption of our following dis-
cussions is that any of those configurations can be plugged
in. For instance, a configuration can be chosen that is op-
timal for certain non-functional properties (e.g., footprint).
As a consequence, we need to be careful when removing fea-
tures from contracts, because we somehow need to consider
their selection and deselection during verification, without
any explicit reference to the feature itself.

The goal of variability hiding in contracts is to save veri-
fication effort as illustrated in Figure 10. The verification of
our running example without behavioral interfaces requires
one to verify BankAccount 1 and to verify BankApplication
against BankAccount 2 . With behavioral interfaces, we
verify BankAccount 1 as above, but verify BankApplication
against an automatically generated interface 4 . Ideally, the
interface generation ensures that once BankAccount is veri-
fied 1 it also establishes the interface 3 . Furthermore, we
assume that given BankApplication is verified with the in-



Figure 10: Verification with(out) variability hiding

terface 4 , it can also be verified without the interface 2 .
Proofs for both properties are out of scope and open for fu-
ture work. Instead, we focus on discussing the benefits for
evolution, and evaluating them for our running example.

Besides possibly reduced effort for a single verification run,
in principle, variability hiding may reduce the effort under
evolution. We distinguish between four different evolution
scenarios illustrated using our running example:
1. A change in product line BankAccount does not require

to change the interface: BankAccount is re-verified 1

and the interface is generated to check for changes.
2. A change in product line BankAccount requires to change

the interface: BankAccount is re-verified 1 and the in-
terface is generated to re-verify BankApplication 4 .

3. A change in product line BankApplication does not re-
quire to change the interface: BankApplication is re-
verified to the interface 4 .

4. A change in product line BankApplication requires to
change the interface: The interface is generated to re-
verify BankApplication 4 .

Only in one of these four scenarios we need to re-verify both,
product line BankAccount 1 and BankApplication 4 . In all
other cases, we can save verification effort under evolution.
However, even in this particular case, hiding some of the
variability in contracts may itself provide a benefit.

4.2 Interface Strategies for Variability Hiding
In the following, we investigate strategies to automat-

ically generate behavioral interfaces given a product line
with feature-oriented contracts and a feature-model inter-
face. For this process, we rewrite these contracts such that
they only depend on features in the feature-model interface.
We identified three alternative strategies to remove features,
namely false-configuration, true-configuration, and hidden-
configuration. While only one of these strategies can be
used for a specific feature, we can combine them by apply-
ing each strategy to remove some of the features, as each
strategy comes with limitations.

False-Configuration. A simple strategy, called false-
configuration, is to generate a metaproduct with only fea-
tures of the feature-model interface. However, the result is
semantically equivalent to a deselection of every feature to
be removed. Therefore, we identify features in preconditions
and postconditions that are not in the feature-model inter-
face, remove the reference and replace the variable in for-
mulas with false. Afterwards, we simplify the resulting pre-
condition and postcondition. Additionally, we can remove
any method that is generally prohibited to access by the
false feature value in contracts. In our example, this is the
case for method estimatedInterest if we remove feature In-
terestEstimation, as the precondition (interestEstimation
&& (daysLeft >= 0)) evaluates to false.

Unfortunately, we cannot apply this strategy in all cases.
Assume, we would create an interface with feature Inter-
estEstimation but without feature Interest, then deselecting

Interest would imply the deselection of InterestEstimation,
which is a contradiction compared to the dependencies in
the interface. In summary, we can only deselect features,
whose deselection does not violate the interface. In other
words, each configuration in the interface must have at least
one corresponding configuration in the product line.

True-Configuration. Analogous to the interface strategy
false-configuration and motivated by the previous example,
it is also possible to bind variability by selection. In strategy
true-configuration, we apply the same transformation prin-
ciple but replace each occurrence of a feature to remove by
true. However, for our feature-model interface in Figure 6,
the feature Interest becomes a mandatory feature, since its
child feature InterestEstimation is part of every product.
Although this strategy is also not applicable in all cases, it
could be valuable to remove some features with this strategy.

Hidden-Configuration. While the previous two strate-
gies bind variability by considering features either as selected
or deselected, with strategy hidden-configuration, we con-
sider both possible values. As result, the strategy is more
complex and we have to handle the removal of preconditions
and postconditions differently.

In postconditions, we use a procedure that we proposed
earlier to eliminate features from feature models specified
as propositional formulas [20, 26]. We combine all ensures-
clauses into a single postcondition and duplicate the com-
plete formula. We replace the feature with true in the first
copy and with false in the second copy. Both formulas
are then combined using a disjunction and then simplified,
if possible. The rationale behind this strategy is that the
selection value of the feature can either be true or false.
Consequently, we can rely on the fact that one of these two
resulting formulas is fulfilled.

For instance, feature Overdraft is not part of the feature-
model interface in Figure 6 and, thus, we need to eliminate
all occurrences in the metaproduct (cf. Listing 5). The post-
condition of method getOverdraftLimit is

ensures !overdraft || (\result == -5000);
ensures overdraft || (\result == 0);

which is transformed into

ensures ((!true || \result == -5000) &&
(true || \result == 0)) ||
((!false || \result == -5000) &&
(false || \result == 0));

and then simplified to

ensures (\result == -5000) || (\result == 0);

being also the intuitive result; if we do not know whether
feature Overdraft is selected or not, we can only rely on the
fact that the return value is either -5000 or 0.

In preconditions, we use the same procedure as above, but
combine both formulas with a conjunction.1 A conjunction
is used as we have to fulfill the precondition for each pos-
sible selection (i.e., true and false). Otherwise, we could
choose a product with a violated precondition. If we need
to remove more than one distinct feature value in a certain
precondition or postcondition, we iteratively remove every
feature with the same procedure.

In principle, the conjunction in precondition may lead to
unsatisfiable predicates. This is only problematic, if this
particular method is actually called by the reusing product

1In contrast, behavioral subtyping is achieved by disjunction
in preconditions and conjunction in postconditions [18].



Variability hiding 3

No hiding 1 False True Hidden

Nodes 296,961 37,134 242,699 38,460
Time (min) 13.6 1.95 15.9 1.44
Proofs 18 14 18 14
Products 96 8 4 96

Table 1: Verification effort for product line BankAc-
count with(out) variability hiding (cf. Figure 10)

line. Similarly, the disjunction in postconditions could be
too weak to prove certain properties of callers. If contracts
are indeed not sufficient, we can either decide to add the
corresponding feature to the feature-model interface or chose
one of the other two strategies.

Summary. With variability hiding, we remove feature
references from contracts to reduce the verification effort of
dependent product lines. We discussed two strategies to
bind variability, namely false- and true-configuration. That
is, we effectively verify only a subset of all possible config-
urations of the reused product line, ruling out some config-
urations. Consequently, there is no potential to plug-in the
best configuration according to non-functional properties.
In contrast, hidden-configuration removes features without
binding variability. For all three interface strategies, it is
unclear to what extent they improve the efficiency.

5. CASE STUDY
To evaluate the feasibility of variability hiding in con-

tracts, we applied it to our running example, a product line
we used in prior studies [24, 27]. However, as it was a single
product line with all functionality, we had to decompose it
into two smaller product lines. We chose a straightforward
decomposition along the classes; product line BankAccount
provides core functionality based on class Account, whereas
all other classes are defined in product line BankApplication.

As decomposition did not break any existing proofs with
KeY [5], we started with a verified dependent product line
(cf. 1 and 2 in Figure 10). In KeY, we set method treat-
ment to contract rather than inlining to abstract from imple-
mentation details when verifying product line BankApplica-
tion. Otherwise, every change to product line BankAccount
could potentially break all proofs of BankApplication.

We manually applied each interface strategy to all features
by potentially restricting the verified products. For plau-
sibility, we verified class Account against the interface 3 ,
whereas this verification is not necessary, if we are able to
prove that an automatically extracted interface leads to the
same verification results as for the original product line (cf.
Section 4). As expected, all proofs passed in this case. Fi-
nally, we verified all classes of product line BankApplication
against the interface 4 , which is supposed to replace the
complete verification 2 . Again, KeY verified all methods
automatically. We performed all experiments on a notebook
with Intel Core i7 (2.4GHz), 8 GB RAM, and Windows 7.

In Table 1, we summarize the verification effort for prod-
uct line BankAccount and its verification against the inter-
face (cf. Figure 2). In detail, we present the verification
effort measured in time, nodes, and number of proofs that
are necessary to verify. The number of proofs varies as we
removed methods with precondition false. The number
of products varies as false- and true-configuration actually
bind variability. As discussed earlier for true-configuration,

Variability hiding 4

No hiding 2 False True Hidden

Nodes 95,292 27,016 53,983 21,393
Time (min) 5.37 0.770 2.20 0.585
Proofs 11 11 11 11
Products 144 12 6 144

Table 2: Verification effort for product line BankAp-
plication with(out) variability hiding (cf. Figure 10)

feature Interest effectively becomes a mandatory feature.
As result, we can see that each interface strategy reduces

the number of nodes, time, and proofs that are necessary
for the verification compared to the verification of the whole
product line BankAccount. Whereas the verification effort
with false- and hidden-configuration noticeably reduce the
effort, strategy true-configuration only presents slight im-
provements during the verification process. Even if our as-
sumption is wrong that these proofs are not necessary, it still
seems feasible to perform proofs for interfaces additionally.

In Table 2, we present the verification effort for product
line BankApplication. We verified class Application and
Transaction either with product line BankAccount 2 or
the behavioral interface 4 . Whereas the number of proofs
was equal for all scenarios, we get noticeable benefits for
number of nodes and time needed for the verification using
all interface strategies. Again, strategy true-configuration
presents the smallest benefit, while the other two strategies
need less than half the time for verification. Especially in-
teresting is that strategy hidden-configuration achieves best
performance without binding variability: verification time is
reduced by 89% and number of nodes by 78%.

As result of our investigation, we conclude that using a
behavioral interface can reduce the verification effort for de-
pendent product lines. Overall, we experienced the best
performance with strategy hidden-configuration, followed by
false- and true-configuration. Strategy true-configuration
yields worst results, as it forces the inclusion of all con-
tracts that are introduced by hidden features. Consequently,
the complexity of contracts increases and negatively influ-
ences the verification effort. It seems that strategy hidden-
configuration effectively simplifies contracts, while maintain-
ing all necessary properties in our case study. While this
strategy was applicable to all features and all methods in
our case study, it is possible that other dependent product
lines contain cases in which preconditions are too strong or
postconditions are too weak (cf. Section 4). As a fallback,
we can still recommend the other strategies or simply to
add further features to the feature-model interface (i.e., to
remove fewer features from contracts).

6. INSIGHTS AND CHALLENGES
By means of our case study, we convinced ourselves that

variability hiding is feasible for contracts and reduces the
verification effort. However, we faced several challenges for
variability hiding in contracts that we discuss in this section.

Class Invariants. While our previous discussions focused
on contracts, classes can also be specified by means of class
invariants. Class invariants can significantly reduce the spec-
ification effort, as properties that occur in all preconditions
and postconditions can be extracted. Furthermore, class in-
variants are especially helpful for subtyping, as all methods
in subclasses have to adhere to the supertype invariants.



The interface strategies false- and true-configuration can
directly be applied to invariants. For instance, assume we
aim to hide a feature f introducing a class invariant i. In the
metaproduct, the class invariant is transformed into f ⇒ i.
Replacing f with false leads to a tautology (i.e., i does not
apply), whereas replacing f with true leads to invariant i
(i.e., i applies independent of configuration).

In contrast, we do not have an elegant solution for apply-
ing strategy hidden-configuration to invariants. In our case
study, we had to eliminate each invariant containing features
to remove. We eliminated each invariant by adding it to all
preconditions and postconditions. For instance, assume a
method m with precondition φ and postcondition ψ, which
do not contain feature f for simplicity. Then, adding invari-
ant i to precondition and postcondition results in φ∧(f ⇒ i)
and ψ ∧ (f ⇒ i), respectively. Applying strategy hidden-
configuration leads to precondition φ ∧ i and postcondition
ψ. Hence, the resulting contract is not caller-friendly as it
relies on the invariant prior execution, but does not estab-
lish it again afterwards. For instance, if two methods of the
class are executed one after another, the second method’s
precondition is potentially violated. While no such prob-
lems occurred in our case study, a fallback is to add those
features to the interface, which, however, would reduce the
potential of variability hiding under evolution.

Framing Conditions. For brevity, our previous discus-
sions focused on preconditions and postconditions as being
the essence of design by contract. However, we experienced
challenges when applying variability hiding to framing con-
ditions, which specify those locations a method is allowed
to change. If a feature that we aim to hide introduces a
field, we need to remove the field from the interface. Con-
sequently, we need to remove the field also from all framing
conditions in which it is mentioned. Although we did not
face any problems with removing every occurrence of the
field, it is unclear whether this is feasible for other product
lines as well. In any case, similar situations occur beyond
product lines, when subclasses add new fields and aim to
change existing assignable locations of certain methods; the
common solution to this are data groups [17], which could
be evaluated for these cases in future work.

Alternative Values. While we focused on variability
hiding in contracts, we also faced problems with alternative
values for fields. For instance, field DAILY_LIMIT is intro-
duced with value -1000 in one feature. Adding an optional
feature called ExtendedDailyLimit replacing the value with
-2000 leads to int DAILY_LIMIT = ExtendedDailyLimit ?
-2000 : -1000 in the metaproduct. Then, removing fea-
ture ExtendedDailyLimit from the implementation is not di-
rectly possible. One solution is to replace the field access
by a getter. In prior work, we experienced similar problems
with alternative types when verifying product lines [15, 27].
The solution there is typically to duplicate and rename the
field [29]. It is an open question whether we can apply sim-
ilar solutions for variability hiding.

Java Interfaces and Abstract Classes. With variabil-
ity hiding, we derive an interface for a given product line
and a set of features to be hidden. As realization, we first
experimented with Java interfaces on implementation level.
However, we soon found out that there are several issues
involved when deciding to use Java interfaces or abstract
classes for variability hiding. First, assume we already have
a good design in a product line, then, it appears wrong to
rewrite it into a potentially worse design just to establish

variability hiding. In particular, introducing a Java interface
for every class requires heavy changes to existing classes of
the reused product line (e.g., each class needs to implement
the interface then). Second, with variability hiding, we can
derive several interfaces for the very same product line cus-
tomized for a given reuse scenario. That is, by specifying
different sets of features to hide, we can derive distinct in-
terfaces. Changing the product line to be aware of all these
interfaces appears odd. Finally, as most verification tools
establish behavioral subtyping between a class and its in-
terfaces, such an approach may pose severe restrictions on
the applicability. All these three arguments also apply to
abstract classes, whereas the situation is even worse in view
of single inheritance, which would only allow one behavioral
interface for each product line.

7. RELATED WORK
We already discussed our prior work on which variability

hiding is based on, such as multi-level interfaces [21], feature-
model interfaces [20], feature-context interfaces [22], feature-
oriented contracts [24], and variability encoding [27, 24, 29].

There are several strategies to scale verification techniques
to product lines [25], such as product-based, feature-based,
and family-based approaches as well as combinations thereof.
In product-based approaches, each product is verified in
isolation. In feature-based approaches, each feature’s arti-
facts are verified in isolation, which is typically not sufficient
due to feature interactions. In family-based approaches as
pursed in this paper, artifacts of all features are analyzed
with respect to the feature model.

Others used contracts for deductive verification of prod-
uct lines. Hähnle and Schaefer propose a feature-family-
based approach applying the Liskov principle [10]. The ad-
vantage is that features are first verified in isolation, but
features’ contracts have to adhere to the Liskov principle.
Bruns et al. [7] and Hähnle et al. [11] propose optimiza-
tions for product-based verification, namely slicing and ab-
stract contracts. Damiani et al. [8] propose feature-product-
based verification, whereas features are verified with uninter-
preted assertions, which are then checked for each product.
With proof composition, we proposed to compose Coq proof
scripts of each feature, which are then checked for all prod-
ucts [28]. Most of these approaches require to generate and
verify all products, which is infeasible for large product lines
and avoided with variability encoding. Furthermore, none
of them has been evaluated on dependent product lines.

There are similar approaches for dependent product lines.
Kästner et al. propose a variability-aware module system to
type check each product line separately [16]. Damiani et al.
adapt delta-oriented programming for dependent product
lines [9]. While both approaches allow to define feature mod-
els for each product line, they do not hide any variability in
feature models, implementation, or contracts.

Variability hiding is heavily based on the notion of feature-
model interfaces [20], whereas two algorithms to compute
them have been proposed. Acher [1] propose to decompose
feature models by means of slicing. Thüm et al. [26] elim-
inate abstract features (i.e., features without mapping to
artifacts) to reason about programs instead of valid con-
figurations. Both algorithms remove features from feature
models while preserving feature dependencies of the remain-
ing features, which is crucial to the correctness of variability
hiding. In addition, strategy hidden-configuration to remove
features from contracts is also inspired by those algorithms.



8. CONCLUSION
Evolution challenges the development of dependent prod-

uct lines. A major problem is that any change in a prod-
uct line may arbitrarily influence other product lines. With
variability hiding, we scale information hiding known from
programming languages to the level of product lines. In
particular, we apply variability hiding to method contracts
in feature-oriented programming. To hide some features to
other product lines, we discussed three strategies to remove
features from contracts.

The results of applying variability hiding to two depen-
dent product lines indicate that it can drastically reduce the
verification effort due to reduced contract complexity. Inter-
estingly, hiding variability is even more efficient than to bind
variability. However, further experiments are required, espe-
cially to estimate the benefit under typical evolution scenar-
ios. Furthermore, proofs on the relation between verification
results with and without variability hiding are needed.
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