
Is There a Mismatch between Real-World Feature Models and

Product-Line Research?

Alexander Knüppel
TU Braunschweig, Germany

a.knueppel@tu-bs.de

Thomas Thüm
TU Braunschweig, Germany

t.thuem@tu-bs.de

Stephan Mennicke
TU Braunschweig, Germany

mennicke@ips.cs.tu-bs.de

Jens Meinicke
University of Magdeburg, Germany

Carnegie Mellon University, USA

meinicke@ovgu.de

Ina Schaefer
TU Braunschweig, Germany

i.schaefer@tu-bs.de

ABSTRACT

Feature modeling has emerged as the de-facto standard to com-

pactly capture the variability of a software product line. Multiple

feature modeling languages have been proposed that evolved over

the last decades to manage industrial-size product lines. However,

less expressive languages, solely permitting require and exclude

constraints, are permanently and carelessly used in product-line re-

search. We address the problem whether those less expressive lan-

guages are suicient for industrial product lines. We developed an

algorithm to eliminate complex cross-tree constraints in a feature

model, enabling the combination of tools and algorithms working

with diferent feature model dialects in a plug-and-play manner.

However, the scope of our algorithm is limited. Our evaluation on

large feature models, including the Linux kernel, gives evidence

that require and exclude constraints are not suicient to express

real-world feature models. Hence, we promote that research on fea-

ture models needs to consider arbitrary propositional formulas as

cross-tree constraints prospectively.

CCS CONCEPTS

· Software and its engineering → Feature interaction; Soft-

ware product lines;

KEYWORDS

Software product lines, feature modeling, cross-tree constraints,

model transformation, expressiveness, require constraints, exclude

constraints

ACM Reference Format:

Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke,

and Ina Schaefer. 2017. Is There a Mismatch between Real-World Feature

Models and Product-Line Research?. In Proceedings of ESEC/FSE’17, Pader-
born, Germany, September 04-08, 2017, 12 pages.
https://doi.org/10.1145/3106237.3106252

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106252

1 INTRODUCTION

Software product-line engineering is a paradigm enabling mass cus-

tomization of software [30]. Instead of developing a monolithic soft-

ware product, the goal is to develop reusable software artifacts for

a speciic domain in a process called domain engineering. Multiple

software artifacts composed together eventually result in a software

product. A software product line is a family of similar software prod-

ucts sharing common artifacts. We distinguish between common

and varying characteristics of products in terms of features. Fea-
tures are user-visible aspects or characteristics of a software [22],

being of interest for some stakeholders. Later, in a process called

application engineering, a set of features is selected based on the

requirements of stakeholders and a software product is derived.

The standard technique in research and industry to manage vari-

ability of a product line is feature modeling [12, 22]. Feature mod-

els ofer an easy-to-understand formalism and unambiguously de-

scribe dependencies among features. In the context of product-line

engineering, feature modeling is a valuable asset in several areas

such as domain scoping [12, 22], feature-oriented software devel-

opment [22, 24, 42], product-line analysis [39], and coniguration

management [48]. Our ten year experience with developing the

open-source tool FeatureIDE [24] and integrating product-line

tools is that a typical obstacle is the expressive power of diferent

feature modeling dialects. Varying expressiveness in feature mod-

eling languages prevents tool reuse and, thus, hinders eicient ap-

plication of existing algorithms and concepts.

Over the last decades, several feature modeling languages, ex-

tending the initially proposed language by Kang et al. [22], have

been suggested, either graphical [6, 12, 16, 18, 20, 23, 24, 31] or tex-

tual [2, 4, 5, 8, 10, 24, 28, 32, 44]. Ideally, given a set of features, a fea-

ture modeling language should be able to represent exactly the set

of all valid feature combinations with respect to the requirements

aquired during the domain engineering phase. A considerable por-

tion of such languages, however, is not expressively complete (i.e., in
theory, certain product lines cannot be represented). Although the

restricted expressiveness was mentioned elsewhere [14, 17, 33, 37],

an in-depth analysis of the problem for real-world feature models

and a practical solution to overcome this limitation are still missing.

In particular, we identiied several proposed methods dealing

with feature models that are still based on expressively incomplete

languages due to their simplicity and dominance in the product-

line community. To name a few, the afected reasearch areas in-

clude automated analysis of feature models [34], synthesis of feature

291

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3106237.3106252

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,

Jens Meinicke, and Ina Schaefer

models [3, 21, 26, 27, 37], product-line testing and analysis [15, 38],
generation of artiicial feature models for experiments and evalua-
tions [19, 35], and optimal feature selection [6, 19, 47, 48]. More sur-

prisingly, the number of anually proposed methods that are based

on expressively incomplete feature modeling languages does not

seem to decrease over time, as we still identiied several publica-

tions in the years 2015 ś 2017 (e.g., [11, 27, 36, 45, 46]).

Typically, expressively incomplete languages used in product-

line research facilitate only two kinds of cross-tree constraints,

here called simple constraints: either the activation of a feature f1
implies the activation of a feature f2 (i.e., f1 requires f2) or the two

features are mutually exclusive and cannot be activated together

(i.e., f1 excludes f2) [22]. We refer to feature models facilitating only

simple constraints as basic feature models.
In contrast to simple constraints, complex constraints are arbi-

trary propositional formulas over the set of features written as

textual constraints [5]. Complex constraints are already part of

many feature modeling languages used in practice, such as Fea-

tureIDE[24], Familiar[2], or Clafer[4]. Other variability lan-

guages, such as KConfig and CDL, where feature model approxima-

tions exist [9], also rely on lavors of propositional logic to document

dependencies between features across the feature model hierarchy.

To overcome the problem of diferent languages required at dif-

ferent stages in the engineering process, a feature model transfor-

mation is necessary. However, feature models with complex con-

straints cannot generally be transformed into ones with only simple

constraints, as their languages difer in expressive power. Neverthe-

less, to answer the question whether there is a mismatch between

real-world feature models and product-line research, we need to

bridge the gap between those diferent languages.

We propose relaxed feature models, an expressively complete lan-

guage based on simple constraints. In theory, this language can re-

place basic feature models for various methods in product-line re-

search. However, relaxed feature models may increase signiicantly

in the number of features and constraints. We analyze the useful-

ness of this transformation on real-word feature models. In particu-

lar, the contributions of this paper are as follows.

• Weprovide examples of product-line research solely focusing

on basic feature models.

• We present a product-preserving transformation from lan-

guages using complex constraints to relaxed feature models,

and formally prove its correctness.

• Wequantitatively assess the limited expressiveness of feature

models with only simple constraints.

• We give evidence that real-world feature models rely on

complex constraints.

• We evaluate our transformation on large real-world feature

models and discuss consequences for product-line research.

2 EXPRESSIVENESS OF FEATURE MODELS IN
PRODUCT-LINE RESEARCH

In this section, we introduce basic feature models, a language pre-
dominantly used in product-line research. Thereupon, we inves-

tigate its expressive power. A basic feature model is a hierarchi-

cally organized tree structure that decomposes features into either

an or-group, an alternative-group, or sole mandatory and optional

Pizza

CheesyCrust Topping

Salami Ham Mozzarella

Size

Normal Big

Dough

Neapolitan Sicilian

CheesyCrust⇒ Big

Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Figure 1: Basic featuremodel representing a product line for

pizzas in FeatureIDE notation.

features. Furthermore, depending on the language, require and ex-

clude constraints can be speciied [12, 22]. In Figure 1, we exem-

plify a basic feature model representing a product line for pizzas.
Features Topping, Size, and Dough are mandatory, thus are part of

all pizza products. As for toppings, we must at least select one of the

features Salami, Ham, or Mozzarella. Regarding the size, we may ei-

ther choose feature Normal or Big. We can also decide which dough

we would like to use, namely classic Neapolitan or Sicilian. Finally,
we can decide to get extra cheese inside our crust, ofered by the op-

tional feature CheesyCrust. Nevertheless, by fulilling the requires

constraint depicted below the diagram (i.e., CheesyCrust ⇒ Big), we
force the size of a pizza to be big, whenever we order a cheesy crust.

A feature model language can be described informally by a con-

crete syntax (i.e., as we did above), or formally by deining a for-

mal model. We are interested in describing our approach formally

to precisely and umambigiously reason about our aforementioned

contributions. For this purpose, Schobbens et al. [33] proposed a

generic formal semantics to catch a variety of older feature model-

ing dialects. To increase expressiveness, they used directed acyclic
graphs instead of trees. However, in our experience, the vast major-

ity of feature modeling languages build upon a tree structure. Thus,

we give a modiied version of the semantics for basic feature mod-

els compared to the one Schobbens et al. proposed [33]. More pre-

cisely, we obtained the requirements for our basic feature modeling

language by conducting an expert survey of scientiic publications

in product-line research. Table 1 lists 15 publications categorized

by their respective product-line discipline that go beyond the anal-

ysis of propositional logic, for which it is not obvious how they can

be used for feature models with complex constraints.

We identiied three common characteristics of a basic feature

modeling language: (1) features are only decomposed into optional

features, mandatory features, or-groups, and alternative-groups,

(2) the hierarchy is built upon a tree instead of a directed acyclic

graph, and (3) only require and exclude constraints (i.e., simple

constraints) are allowed. Optional and mandatory features below

one parent are typically grouped together into an and-group.

Table 1: Summary of reviewed publications using basic fea-

ture models for ive application domains.

Research Area Proposal

Analysis of feature models [11, 34, 46]

Feature model synthesis [3, 21, 26, 27, 37]

Generating artiicial feature models [19, 35]

Product-line testing [15, 38]

Optimal feature selection [6, 19, 47, 48]

292

Is There a Mismatch between Real-World Feature Models and

Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

We denote by F the universe of features. Given a set of features

N ⊆ F , we distinguish between concrete features that are mapped

to software artifacts (i.e., P ⊆ N) and abstract features [41] (i.e.,
N \ P) that are either used for grouping and decomposition or that

are planned to be connected with software artifacts later during

software evolution. Abstract features have the advantage that each

decomposition belongs to exactly one feature and groups can be

explicitly labeled (cf. Figure 1 where features Pizza, Topping, Size,
and Dough are abstract for grouping their sub-features). In other

concrete syntaxes without abstract features, it is possible to decom-

pose a feature into multiple groups (e.g., or- and alternative-groups)

without intermediate features [12]. Both approaches can be used

interchangebly with respect to the set of valid products [41]. In-

spired by the formal semantics of Schobbens et al. [33], we deine

the syntactic domain of basic feature models as follows.

Deinition 2.1. A basic feature model is deined as a 7-tuple

(N , P , r ,ω, λ,Π,Ψ) where

• N ⊆ F is a inite set of features and P ⊆ N a subset of

concrete features.

• r ∈ N is the root feature.

• ω : N → {0, 1} is a function labeling a feature as either

optional (0) or mandatory (1) with ω(r) = 1.

• λ : N → N × N is a function representing the relationship

of a parent feature and its sub-features. The lower bound is

the minimal number of features that must be selected, and

the upper bound is the maximal number of features that can

be selected. We use ⟨1..1⟩ for alternative-groups, ⟨1..n⟩ for

or-groups with n sub-features, ⟨n..n⟩ for and-groups with n

sub-features, and ⟨0..0⟩ for leaf features.

• Π ⊆ N ×N is a decomposition relation. We denote (f ,д) ∈ Π

as f ≺ д, meaning that д is sub-feature of f .

• Ψ ⊆ { f ⇒ д, f ⇒ ¬д | f ,д ∈ P} is a set of simple con-

straints in propositional logic.

A basic feature model has an acyclic tree structure (i.e., except

for root feature r , every feature has exactly one parent) and leaf

features must be concrete (i.e., ∀f ∈ N , if λ(f) = ⟨0..0⟩ then f ∈ P).

Moreover, only features of an and-group can be mandatory (i.e., for

f ,д ∈ N , if д ≺ f and ω(f) = 1, then λ(д) = ⟨n..n⟩ with n being

the number of sub-features of д). The set of all basic feature models

is denoted by LB .

Example 2.2. Consider a feature model (N , P , r ,ω, λ,Π,Ψ) ∈ LB

as depicted in Figure 2. The representation in LB is illustrated in

the following, where names of features are abbreviated by their

irst identifying letters.

P = {Sa,H ,M,N ,B}

N = {Pi,T , Si} ∪ P

r = Pi

ω(f) =

{
0 if f ∈ {Sa,H ,M,N ,B}

1 if f ∈ {Pi,T , Si}

λ(f) =




⟨0..0⟩ if f ∈ {Sa,H ,M,N ,B}

⟨2..2⟩ if f = Pi

⟨1..1⟩ if f ∈ {Si}

⟨1..3⟩ if f = T

Π = {(Pi,T), (Pi, Si), (T , Sa), (T ,H),

(T ,M), (Si,N), (Si,B)}

Ψ = {B ⇒ M}

Pizza

Topping

Salami Ham Mozzarella

Size

Normal Big

Biд ⇒ Mozzarella

Figure 2: Reduced feature model for the pizza product line.

The distinction between concrete and abstract features allows

us to deine the semantics of basic feature models only consider-

ing features that inluence the inal product. For instance, in Exam-

ple 2.2, features Pizza, Topping, Size, and Dough are abstract such

that their integration into any valid program variant has no direct

efect. Nevertheless, they are used in basic feature models for group-

ing and enabling the selection of sub-features. This is particularly

important when comparing two or more feature models, as they

may syntactically difer, but still represent the same software prod-

uct line [40, 41].

Therefore, it is important to distinguish features in conigurations
(i.e., a feature selection possibly including abstract features) and

features in program variants (i.e., the list of concrete features as an
abstraction from implementation details). To retrieve an abstraction

of a program variant from a given coniguration, wemust remove all

abstract features. Therefore, we deine the set of valid conigurations
as follows.

Deinition 2.3. Let m = (N , P , r ,ω, λ,Π,Ψ) be a basic feature

model. Coniguration c ∈ 2N is valid form, denoted by c |=C m, if

and only if

• it contains the root feature: r ∈ c .

• it satisies the decomposition type: ∀f ∈ c , λ(f) = {⟨0..0⟩

⟨1..1⟩ ⟨1..n⟩ ⟨n..n⟩}, where n is the number of sub-features

of f , andmand(f) ⊆ c must hold, where mand(f) = {д ∈

N |ω(д) = 1 ∧ f ≺ д } is the set of mandatory sub-features

of f .

• its parent-child-relationships hold:

∀f ∈ c : f ′ ≺ f implies f ′ ∈ c , and
• it satisies each cross-tree constraint:

∀ψ ∈ Ψ :
∧
f ∈c

f ∧
∧

f ′∈N \c
¬f ′ |= ψ

We denote the set of all valid conigurations ofm by Cm .

Based on Deinition 2.3, the semantic function maps a feature

model in LB to its product line. The semantic domain D (i.e., the

set of all existing product lines) is deined as D = 22
P
with P ⊆ F

being the set of concrete features. For basic feature models, we

denote by DB ⊆ D the semantic domain of LB .

Deinition 2.4. The semantics of a basic feature modelm is its

set of valid program variants, deined by JmKB := {c ∩ P | c ∈ Cm }.

Example 2.5. Consider the feature modelm ∈ LB in Figure 2

inspired by the pizza product line. The semantic function based on

293

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,

Jens Meinicke, and Ina Schaefer

Deinition 2.4 results in the following product line, comprising 11

program variants in total.

JmKB = {{N , Sa}, {N ,H }, {N ,M}, {N , Sa,H },

{N , Sa,M}, {N ,H ,M}, {N , Sa,H ,M},

{B,M}, {B, Sa,M}, {B,H ,M}, {B, Sa,H ,M}}

Conversely to Example 2.5, an interesting problem is whether a

representing feature model for a given product line exists. For this

purpose, we deine a language as expressively complete, if the domain

of the language equals D and expressively incomplete otherwise.
Whether a basic feature modeling language is suicient to express

all theoretical product lines is answered by the following theorem.

For convenience, the product line of interest is visualized in Figure 3

by the left feature model with two complex constraints.

Theorem 2.6. The language of basic feature models LB is expres-
sively incomplete (i.e., DB , D).

Proof. It is suicient to only show one product line π for which

no basic feature model exists. We choose π = {{A,B}, {A,C}, {B},

{B,C}, {A,B,C}}. Based on Deinition 2.1, features ofm can have

optional and mandatory features, or-groups, or alternative-groups

below them. Furthermore, simple constraints can be speciied. We

make the following observations.

• Parent-child-relationships and constraints: No feature is oc-

curring with any other feature in every product. Hence,

there are neither parent-child-relationships nor require con-

straints between features A, B, and C . Product {A,B,C} fur-

ther reveals that there are no exclude constraints between

these three features.

• Alternative-groups: Similar to above, product {A,B,C} re-

veals that there are no alternative-groups.

• Mandatory features: There is no single feature occurring in

every product. Therefore, neither feature A, B, nor C are

mandatory sub-features of r .

• Optional features: Features A, B, andC cannot all be optional

sub-features of r , because the empty product is missing.

• Or-groups and abstract features: Assume f1, f2 ∈ {A,B,C}

with f1 , f2 are in the same or-group. Since there are

no cross-tree constraints, no parent-child-relationships, no

alternative-groups, and no mandatory features, {{ f1}, { f2}}

⊂ π must hold. This, however, is contradicting to the prod-

uct line π . Abstract features do not improve the situation,

since they can only be placed above the or-group or be part

of the or-group with the remaining third feature below. No

options left are enough to represent the product line.

�

The other two feature models in Figure 3 are further examples of fea-

ture models where no pendant inLB exist. Theorem 2.6 proves that,

in theory, methods and tools in product-line research limit their

applicability if they only consider basic feature models. However,

it is unclear whether real-world feature models are afected by this

limitation. Hence, we formally investigate expressively complete

languages used for real-world feature models in the next section.

r

A B C

A ∨ B
B ∨ C

r

A B C

A ∧ B ⇒ C

r

A B C

A⇒ B ∨ C

Figure 3: Three small feature models using complex con-

straints that cannot be expressedwith the basic featuremod-

eling language LB .

3 EXPRESSING REAL-WORLD FEATURE
MODELS

This section introduces (1) feature models with complex constraints,

and (2) relaxed feature models, whereas the latter may serve as a

substitution for basic feature models in product-line research.

3.1 Feature Models with Complex Constraints

Complex constraints are arbitrary propositional formulas over

the set of features. In Deinition 2.1, we already encoded simple

constraints in LB using propositional logic. Hence, complex con-

straints can be seen as a generalization, since we now allow any

logical connection between an arbitrary number of features. Conse-

quently, semantic function J.KB (cf. Deinition 2.4) carries over to

both languages. For convenience, we simply use J.K in the follow-

ing. We deine the syntactic domain LM based on complex con-

straints as follows.

Deinition 3.1. A feature model in LM is a 7-tuple

(N , P , r ,ω, λ,Π,Ψ) where

• N , P , r ,ω, λ,Π follow Deinition 2.1 and

• cross-tree constraints are arbitrary propositional formulas

over the set of features N , i.e., Ψ ⊆ B(N).

Theorem 3.2. The language LM is expressively complete.

Proof. Let π ∈ D be a product line. We construct feature model

m = (P ∪ {r }, P , r ,ω, λ,Π,Ψ) such thatm ∈ LM with P =
⋃
p∈π

p

and each feature f ∈ P holds the following conditions.

• is sub-feature of root r : r ≺ f .

• is optional: ω(f) = 0.

• is a leaf feature: λ(f) = ⟨0..0⟩.

Root r is decomposed into optional features (i.e., λ(r) = ⟨|P |..|P |⟩).

Moreover, we add only one complex constraint representing the

product line in disjunctive normal form such that JmK = π :

Ψ = {
∨
p∈π

(
∧
f ∈p

f ∧
∧

f ∈P\p
¬f)}.

Hence, LM is expressively complete. �

Complex constraints ofer a strong and concise mechanism for

documenting feature dependencies in a feature model. However, it

is unclear how existing approaches in product-line research should

be extended to integrate them. For example, in our survey (cf. Ta-

ble 1) we looked at algorithms for optimal feature selection. Some

of these approaches are based on genetic algorithms [6, 19]. There

exists thus a catalog on how decomposition groups and cross-tree

constraints are encoded into chromosomes of individuals. This is

294

Is There a Mismatch between Real-World Feature Models and

Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

less challenging for simple constraints, since there are only four

dependencies between two features: either one feature requires an-

other feature (and vice versa), both are mutually exclusive, or there

is no dependency. For arbitrary propositional formulas, however,

it may be a considerable amount of extra work to modify these al-

gorithms, and it may also be questionable whether a modiication

leads to an acceptable performance.

Another relevant aspect with an impact on existing product-line

research is the interoperability of tools and tool reuse in general.

Research could proit from a plug-and-play manner to combine

existing and new concepts and tools. For this vision of incorporating

diferent product-line tools, it is necessary that their feature model

languages are translatable into each other, which gives rise to a

product-preserving feature model transformation.

3.2 Relaxed Feature Models

In this section, we consider an alternative feature modeling lan-

guage that is (1) syntactically very close to the language of basic fea-

ture models, (2) uses only simple constraints, and (3) is expressively

complete. This language serves as a bridge between basic feature

models and feature models using complex constraints. The difer-

ence to basic feature models is that relaxed feature models allow ab-

stract features to be leaf features and to be part of simple constraints.

Deinition 3.3. A relaxed feature model is deined as a 7-tuple

(N , P , r ,ω, λ,Π,Ψ) where

• N , P , r ,ω,Π follow Deinition 2.1,

• leaf features may also be abstract, and

• abstract features in simple constraints are allowed:

Ψ ⊂ { f ⇒ д, f ⇒ ¬д | f ,д ∈ N }.

The set of all relaxed feature models is denoted by LR .

Our semantics also applies to LR . With the following theorem,

we show that those subtle changes already guarantee LR to be

expressively complete.

Theorem 3.4. Language LR is expressively complete.

Proof. Let π = {p1, ...,pn } be a product line with π ∈ D. We

construct a feature modelm = (N , P , r ,ω, λ,Π,Ψ) in LR such that

the following conditions hold.

P =
n⋃
i=1

pi

N = {r ,G,д1, ...,дn } ·∪ P

ω(f) =

{
0 if f < {r ,G}

1 if f ∈ {r ,G}

λ(f) =




⟨|P | + 1..|P | + 1⟩ if f = r

⟨1..1⟩ if f = G

⟨0..0⟩ otherwise

Π = {(r , f) | f ∈ P ∪ {G}} ∪ {(G, f) | f ∈ {д1, ...,дn }}

Ψ =
n⋃
i=1

{дi ⇒ f | f ∈ pi } ∪ {дi ⇒ ¬f | f ∈ P \ pi }

Feature G is a mandatory abstract feature decomposed into an

alternative-group with parent r and abstract sub-features д1, ...,дn .

All concrete features in P are optional sub-features of r . Each sub-

feature of G corresponds to one and only one product in π . For

each feature in product pi , we create a single requires constraint

(i.e., ∀f ∈ pi : (дi ⇒ f) ∈ Ψ). For every other feature, we create

a single excludes constraint (i.e., ∀f ∈ P \ pi : (дi ⇒ ¬f) ∈ Ψ).

Each abstract leaf feature in the alternative-group now denotes a

product in the product line π , such that JmK = π holds. Hence, LR

is expressively complete. �

In summary, feature models with complex constraints are ex-

pressively complete, but simpliied assumptions in product-line re-

search limit applicability of such feature models. Since LM and

LR are equally expressive, a transformation from one language to

another exists. Even more, semantic function J.K may map syntacti-

cally diferent feature models in LR to the same product line (e.g.,

if an abstract leaf feature is added). Hence, there may even exist

more than one transformation.

Nevertheless, an acceptable transformation for us must comply

with certain criteria. In particular, our goal is to ind a transfor-

mation that does not degenerate the initial feature model hierar-

chy, since a diferent hierarchy without conserving present domain

knowledge may cause confusion or might even be unusable as soon

as the user starts manually working with the feature model to in-

spect analysis results. The construction proof of Theorem 3.4 in-

validates this requirement. For this reason, we must think of a dif-

ferent transformation from LM to LR .

4 ELIMINATING COMPLEX CONSTRAINTS

In this section, we present a transformation from feature models in

LM to relaxed feature models in LR . Our assumption is that re-

laxed feature models can be used in numerous application domains

as a replacement for basic feature models. Hence, this translation

is a potential compromise for feature models with complex con-

straints to be applicable for tools and approaches in product-line

research only dealing with simple constraints.

First, we explain our algorithm for translating complex con-

straints into additional abstract features and simple constraints,

while preserving the product line. Second, we give instructions on

how further concepts (e.g., mutex-groups) can be resolved for our

transformation algorithm to become generally applicable.

4.1 Translation to a Relaxed Feature Model

Not all complex constraints are of the same kind. Some complex

constraints can be translated to an equivalent conjunction of sim-

ple constraints. For example, the complex constraint f1 ∨ f2 ⇒ f3
is equivalent to the conjunction of the simple constraints f1 ⇒ f3
and f2 ⇒ f3. To this end, we classify complex constraints further

into two disjoint categories: pseudo-complex and strict-complex con-

straints. Pseudo-complex constraints are convertible to a set of sim-

ple constraints, whereas strict-complex constraints are not. More

formally, a pseudo-complex constraint is a complex constraintψ such

that its conjunctive normal form has the formψ cnf
=

∧
ci where

ci ≡ (¬f1 ∨ f2) or ci ≡ (¬f1 ∨¬f2) for arbitrary features f1, f2 ∈ F .

Otherwise, we say that ψ is strict-complex. In the remainder, we

assume that pseudo-complex constraints are already resolved and

use the terms complex and strict-complex interchangeably.

The idea for transforming a feature model from LM to LR is

to translate complex constraints to additional abstract features and

simple constraints without adding or removing program variants

from the respective product line. Moreover, the original feature

model hierarchy is still embedded into the new one. Before giving

an algorithm, let us irst introduce a construct that we refer to as

abstract tree.

295

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,

Jens Meinicke, and Ina Schaefer

Deinition 4.1. Letm = (N , P , r ,ω, λ,Π,Ψ) be a feature model in

LM . An abstract tree form is a pair (m̃, Φ), where m̃ = (Ñ , ∅, r̃ , λ̃, ω̃,

Π̃, ∅) is a feature model in LR such that N ∩ Ñ = ∅ and Φ is a set

of simple constraints in propositional logic over N ∪ Ñ .

We use abstract trees to eliminate complex constraints from fea-

ture models. The initial assumption is that we can transform any

cross-tree constraint to an abstract tree such that the complex con-

straint is semantically equivalent to the abstract tree in a given

feature model (i.e., they both restrict the same combinations of fea-

tures that cannot be activated together). We then exploit them to

substitute each complex constraint in a feature model from LM

with a corresponding abstract tree. All abstract trees and original

feature model without complex constraints are then composed to-

gether into an equivalent feature model in LR . The join operation

introduces a new root feature r , decomposing into the respective

root features of the components. Since our algorithm works in-

crementally (i.e., eliminating complex constraints one by one), we

must extend LM to a language LM′ in which abstract features

can be leaf features and also occur in cross-tree constraints.

Deinition 4.2. Letm = (N , P , r ,ω, λ,Π,Ψ) ∈ LM′ and (m̃, Φ) an

abstract tree with m̃ = (Ñ , ∅, r̃ , λ̃, ω̃, Π̃, ∅) such that r < N ∪ Ñ . The

join ofm and (m̃,Φ) is deined by

m • (m̃,Φ) = (N ∪ Ñ ∪ {r }, P , r , λ,ω,Π,Ψ ∪ Φ),

where λ = {(r , ⟨2..2⟩)} ∪ λ ∪ λ̃, ω = {(r , 1)} ∪ ω ∪ ω̃, and Π =

{(r , r), (r , r̃)} ∪ Π ∪ Π̃.

Transformation to Abstract Trees. Letm ∈ LM′ and ϕ be a

(not necessarily complex) constraint ofm.Without loss of generality,

we assume that ϕ is in conjunctive normal form (CNF),

ϕ = (l11 ∨ . . . ∨ l
1
k
) ∧C2 ∧ . . . ∧Cn ,

with clauses C1,C2, . . . ,Cn and literal l ij is the j-th literal of the i-

th clause, denoted by l ij ∈ Ci . |Ci | denotes the number of literals

occurring in clause Ci , e.g., |C1 | = k . A literal is called negative
literal if it has the form ¬f where f is a feature ofm. Otherwise, it

is a positive literal. In both cases, the literal is referencing feature f .

The abstract tree for ϕ with respect tom is denoted by T(m,ϕ) =

(m̃ϕ ,Φϕ). We irst exploit the syntactic structure of the formula,

yielding m̃ϕ as follows. Root feature r̃ is added to m̃ϕ . For each

clause Ci , we add an abstract feature Ci to m̃ϕ , such that Ci is a

mandatory sub-feature of r̃ , i.e., r ≺ Ci and ω̃(Ci) = 1. For each

literal l ij , we add an optional feature l ij to m̃ϕ as sub-feature of

Ci , e.g., C1 ≺ l11 . Each clause Ci decomposes into an or-group, i.e.,

λ̃(Ci) = ⟨1..|Ci |⟩. Every coniguration of m̃ϕ contains at least the

root feature r̃ , features C1, . . . ,Cn , and for each clause Ci at least

one literal contained in Ci .

As a last step, we integrate the type of the literals, positive or

negative, into the constraint set Φϕ , such that the abstract tree

T(m,ϕ) may substitute the constraint ϕ inm. Therefore, consider

a positive literal l ij , being a reference to some feature f in m. A

coniguration ofm respecting constraint ϕ such that l ij is evaluated

to true, contains feature f . Whenever the abstract feature l ij is part

of a coniguration, f is part of the coniguration. Hence, for every

positive literal l ij with reference to some feature f , we add a requires

(a)

ϕ = (A ∨ B) ∧ (A ∨C) ∧ (¬D ∨ ¬E)

¬D ∨ ¬E

¬E¬D

A ∨C

CA

A ∨ B

BA

(b) ASϕ

c1

A′ B′

c2

A′′ C ′

c3

D ′ E ′

A′ ⇒ A
B′ ⇒ B
A′′ ⇒ A
C ′ ⇒ C
D ′ ⇒ ¬D
E ′ ⇒ ¬E

Figure 4: (a) a complex constraint in conjunctive normal

form. (b) the corresponding abstract tree.

constraint (i.e., l ij ⇒ f ∈ Φϕ). Conversely, for every negative literal

l ij with reference to some feature f , we add an excludes constraint

(i.e., l ij ⇒ ¬f ∈ Φϕ). We illustrate the described procedure for

a complex constraint and its respective abstract tree in Figure 4.

Literals in the conjunctive normal form become primed features

(i.e., for unique identiication) and simple constraints in the abstract

tree. The decomposition of the top feature is an and group and

clauses become or-groups.

An abstract tree T(m,ϕ) is capable of replacing the constraint

ϕ inm without changing the semantics of the feature model. We

denote bym \ ϕ the feature modelm without constraint ϕ.

Lemma 4.3. Let m = (N , P , r ,ω, λ,Π,Ψ) be a feature model in
LM′ and ϕ ∈ Ψ. Then JmK = J(m \ ϕ) • T (m,ϕ)K.

Proof. Let T(m,ϕ) = (m̃ϕ ,Φϕ) with root feature r .

JmK ⊆ J(m \ ϕ) • (m̃ϕ ,Φϕ)K: Let p ∈ JmK. Then there is a con-

iguration c ∈ Cm such that c ∩ P = p and c |= ϕ. We construct a

coniguration c̃ ∈ C(m\ϕ)•(m̃ϕ ,Φϕ)
such that c̃ ∩ P = p. First, conig-

uration c , root feature r , and all abstract clause features C1, . . . ,Cn
of ϕ are part of c̃ . For each feature f ∈ c , if there is a positive literal

l ij in ϕ referencing f , add l ij to c̃ . For each feature f < c , if there is

a negative literal l ij in ϕ referencing f , add l ij to c̃ . Since c and c̃ at

most difer in abstract features, c̃ ∩ P = p.

It remains to be shown that c̃ ∈ C(m\ϕ)•(m̃ϕ ,Φϕ)
. Towards a

contradiction, assume c̃ < C(m\ϕ)•(m̃ϕ ,Φϕ)
. Since c ∈ Cm and c ⊆

c̃ , the contradiction arises from (m̃ϕ ,Φϕ) (i.e., (1) m̃ϕ or (2) Φϕ).

Suppose in case (1), there is a clause Ci with literals l i1, . . . , l
i
k
< c̃ .

By construction, for each positive literal, the respective feature f

is not part of c̃ thus f < c . For each negative literal, the respective

feature f ∈ c ∩ c̃ . But this contradicts the assumption that c ∈ Cm
since c ̸ |= ϕ, as clauseCi cannot be satisied by c . In case (2), similar

arguments apply.

J(m \ ϕ) • (m̃ϕ ,Φϕ)K ⊆ JmK: Let p ∈ J(m \ ϕ) • (m̃ϕ ,Φϕ)K, i.e.,

there is a coniguration c̃ with c̃ ∩ P = p. By c = c̃ ∩ N we obtain a

candidate coniguration with c ∩ P = p. Proving c ∈ Cm amounts

to the reverse line of argumentation as above. �

Example 4.4. In Figure 5, we illustrate the elimination approach

on the pizza product line extended by two complex constraints.

All pseudo-complex constraints are translated to a set of simple

constraints 1 . All strict-complex constraints are translated into

296

Is There a Mismatch between Real-World Feature Models and

Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

root

Pizza

CheesyCrust Topping

Salami Ham Mozzarella

Size

Normal Big

Dough

Neapolitan Sicilian

Sicilian CheesyCrust Big

Neapolitan ¬ Salami
Neapolitan ¬ Ham

CheesyCrust ¬CheesyCrust
Sicilian ¬Sicilian

Big Big

root

Pizza

CheesyCrust Topping

Salami Ham Mozzarella

Size

Normal Big

Dough

Neapolitan Sicilian

Sicilian CheesyCrust Big

Neapolitan ¬ Salami
Neapolitan ¬ Ham

CheesyCrust ¬CheesyCrust
Sicilian ¬Sicilian

Big Big

Neapolitan ¬Salami ¬Ham

CheesyCrust Sicilian Big

Or

Complex

Constraints

Synthetic

Root

Abstract

Tree

1

2

3

Figure 5: Example of eliminating complex constraints of the

pizza product line.

abstract trees 2 . Original feature model without complex con-

straints and abstract trees are composed together 3 to obtain

a product-preserving feature model in LR . The resulting feature

model in Figure 5 now comprises ive simple constraints and in-

creased by ive additional abstract features.

Total Correctness. Lemma 4.3 provides the desired elimination

process. If the chosen constraint ϕ is a complex constraint inm,

the resulting feature model (m \ ϕ) • (m̃ϕ ,Φϕ) has one complex

constraint less thanm. This is because the complex constraint ϕ is

removed fromm and only simple constraints fromΦϕ are added. Let

|m |c denote the number of complex constraints inm. Furthermore

observe that by Lemma 4.3, the tree structure ofm is maintained

during the elimination process, i.e., them is structurally included in

m′, since only constraints are removed or added, and abstract trees

are added tom. The following theorem shows how to incorporate

Lemma 4.3 in an iterative elimination process, eventually obtaining

a relaxed feature model from any feature modelm ∈ LM .

Theorem 4.5. Letm ∈ LM be a feature model. Then there exists
a feature model m′ ∈ LR such that (1) the tree structure of m is
embedded in that ofm′ (i.e., Πm ⊆ Πm′) and (2) JmK = Jm′K.

Proof. Letm ∈ LM be a feature model with set of constraints

Ψ. Setm0 =m with Ψ0 = Ψ. Computemi+1 frommi as follows.

(1) Select complex constraint ϕ ∈ Ψi and

(2) setmi+1 = (mi \ c) • T (mi ,ϕ).

Observe that for each i ≥ 1, if |Ψi−1 |c > 0, then |Ψi |c = |Ψi−1 |c − 1.

Since Ψ is inite, say |Ψ| = k , there is an n ≤ k such that Ψn con-

sists only of simple constraints. Since only complex constraints

are removed frommi and abstract trees are added in order to ob-

tainmi+1, the tree structure ofmi is included in that ofmi+1. By

Lemma 4.3, the aforementioned observations, and transitivity of

set equality (=), we getm′
=mn ∈ LR with (1) the tree structure

ofm included and (2) JmK = Jm′K. �

Given a constructive proof on the correctness of our algorithm, we

are now able to overcome the limitations of basic feature models

used in product-line research. However, our algorithm is based on

the assumption that we already have a feature model in LM , which

is too restricting, since LM is not the only used language for real-

world feature models. In the next section, we show how to make

our algorithm applicable to four other common characteristics of

feature modeling languages.

4.2 Translating Feature Model Dialects

Some feature modeling languages use additional concepts and de-

composition groups in their concrete syntax to the ones we deined

before. Thus, we propose a two-step algorithm that, irst, trans-

forms an arbitrary feature model to a feature model in LM , and,

second, transforms the resulting feature model to a relaxed feature

model in LR . The following described transformations are visual-

ized in Figure 6.

Multiple Decomposition Types (Tλ). The language used by

Czarnecki and Eisenecker [12] allows a feature to have multiple

decompositions (e.g., an alternative- and an or-group below the

same feature. To eliminate multiple groups д1, ...,дn below a fea-

ture f , we set the features decomposition type to an and-group

(i.e., λ(f) = ⟨n..n⟩), and substitute each group дi by a mandatory

abstract feature auxi such that f ≺ auxi and auxi ≺ дi for all

i = 1, ...,n. Mandatory and optional features below f remain as-is.

Directed Acyclic Graphs (TDAG). Some feature modeling lan-

guages, such as FORM [23] and FeatuRSEB [18], use directed

acyclic graphs opposed to trees. If a feature д has multiple parents

f1, ..., fn , we keep the relationship f1 ≺ д and add an abstract fea-

ture auxi−1 for each f2, ..., fn such that fi ≺ auxi−1. Finally, we

add constraints д ⇔ auxi−1 for all i = 2, ...,n.

Group Cardinalities (Tcard). There exist languages with cus-

tom group cardinalities [13]. If a feature д has a decomposition type

diferent from the deined ones (e.g., λ(д) = ⟨a..b⟩), we set the de-

composition type to an and-group (i.e., λ(д) = ⟨n..n⟩ with n being

the number of sub-features of д) and add the following complex

constraint:

д ⇒
∨

M ∈Pa,b

(
∧

f ∈M

f ∧
∧

f ∈{f ′ | д≺f ′ }\M

¬f)

with Pa,b = {A ∈ 2{f
′ | д≺f ′ } | a ≤ |A| ≤ b} being the set of all

feature combinations of sub-features of д where each combination

has at least a and at most b elements.

Mutex-Groups (Tmutex). Mutex-groups (i.e., groups where at

most one feature can be selected) are another kind of prominent

decomposition relations (e.g., in KConfig and CDL). If a feature f

is a mutex-group decomposed into features f1, ..., fn , we change

f ’s decomposition type to an and-group with one optional abstract

sub-feature f ′. Feature f ′ becomes an alternative-group with sub-

features f1, ..., fn .

The presented transformations show that our approach is appli-

cable to many other feature modeling languages. We can always

develop a cascade of model transformations to eventually obtain a

feature model in LR . Correctness of transformations is omitted as

it is much simpler compared to Section 4.1 and would require many

further formalisms. Regarding the bigger picture, we are now in

a position to investigate whether a mismatch between real-world

feature models and product-line research exists by evaluating the

usefulness of the transformed feature models.

297

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,

Jens Meinicke, and Ina Schaefer

(a) f

f1 O1 O2
Tλ
−→

f

f1 aux1

O1 O2

(b) f

f1 f2

д

TDAG
−→

f

f1

д

f2

aux1

д ⇔ aux1

(c) f

f1 f2 f3
Tcard
−→

⟨2..3⟩

f

f1 f2 f3

f ⇒ f1 ∧ f2 ∧ ¬f3
∨f1 ∧ ¬f2 ∧ f3
∨¬f1 ∧ f2 ∧ f3
∨f1 ∧ f2 ∧ f3

(d) f

f1 f2
Tmutex
−→

⟨0..1⟩

f

f ′

f1 f2

Figure 6: Graphical representation of a translation between concrete and abstract syntax: (a) adding an abstract feature to

eliminate multiple decomposition types, (b) transforming a directed acyclic graph into a tree structure, (c) elimination of a

custom group cardinality, and (d) elimination of a mutex-group.

5 EVALUATION AND DISCUSSIONS

We implemented a prototype in the open-source framework Fea-

tureIDE and conducted experiments to evaluate the following re-

search questions. Information on how to replicate the evaluation

and where to ind all data sets is given in the appendix.

RQ1 What is the percentage of product lines representable by basic
feature models?

RQ2 To what extent are simple and complex constraints used in real-
world feature models?

RQ3 To what extent do feature models increase by transforming them
to relaxed feature models?

5.1 Open-Source Implementation

We implemented a prototype of our algorithm in FeatureIDE 3.1.0.

The prototype allows to eliminate complex constraints of a feature

model in FeatureIDE’s own ile format, resulting in an equivalent

relaxed feature model.

Our elimination algorithm formulated in Section 4.1 relies on the

conjunctive normal form of a constraint. The implementation also

works with the negation normal form as-is, but the resulting abstract

trees may constitute a diferent structure. Within the prototype,

a user has the choice to either use the negation normal form, the

conjunctive normal form, or the best for each constraint.

There is also the option to preserve the number of conigura-

tions. Our algorithm introduces new abstract features which do

not increase the number of program variants, but may increase the

number of conigurations. If we add a bi-implication instead of a

sole requires constraints (i.e., f1 ⇔ f2), we force a bijection be-

tween old and new conigurations, which preserves the number

of conigurations. This is useful for applications that do not distin-

guish between conigurations and program variants, but depend on

their number (e.g., automated analyses or product-based sampling).

As an additional application scenario, our prototype forms the

basis for general exporters to formats that only permit simple con-

straints (e.g., the FaMa ile format [8]). Thereupon, we implemented

an exporter to the basic FaMa ile format [8], which is required as

an input format for the BeTTy framework [34].

We use the prototypical implementation to answer research ques-

tion RQ3. For our evaluation, we always use the combined approach

to compute the best abstract tree for each complex constraint (i.e.,

resulting in the minimum amount of additional features and con-

straints). Moreover, we do not preserve the number of conigura-

tions, as it would only double the number of newly introduced re-

quire constraints.

5.2 Setup and Evaluated Feature Models

In our experiments, we are interested in large, industrial feature

models and their cross-tree constraints. However, only few large

feature models are publicly available, and online repositories, such

as S.P.L.O.T. [28], mainly ofer small toy examples that hardly re-

lect the complexity of real-world feature models. Hence, for our

evaluation, we use four monthly snapshots of the automotive prod-

uct line from our industrial partner with up to 18,616 features and

1,369 cross-tree constraints. Moreover, we evaluate our algorithm

on variability models associated with two other variability model-

ing languages used in real software projects, namely KConfig and

the component deinition language (CDL).
KConfig was designed for the coniguration management of the

Linux kernel, but is also used in other software projects, such as

axTLS or CoreBoot. CDL is speciically designed for the embedded

system eCos. Each CDLmodel represents the coniguration options

for the eCos kernel for a speciic hardware platform [9].

Since reference feature models are missing, we extended the

CDLTools and LVAT developed by Berger et al. [9] to map the

semantics of both languages to the FeatureIDE ile format. As the

semantics of all three languages are diferent, we had to make

reasonable compromises. For all KConfig models, we neglected its

tristate logic and assumed that features are either integrated in a

program variant or not. In the mapping from KConfig and CDL to

a feature model, we disregarded attributes (e.g., integer or strings)

and removed cross-tree constraints that were either redundant (i.e.,

already covered by the hierarchy), unsatisiable, or were referencing

non-existent features. Overall, we analyzed four feature models

from the automotive sector, 116 exported from CDL, and seven

exported from KConfig.

5.3 Results and Discussion
RQ1:What is the percentage of product lines representable

by basic feature models? So far, we proved that basic feature

models are expressively incomplete (cf. Theorem 2.6). However, the

percentage of inexpressible feature models is still not identiied. To

this end, we decided to quantify the expressiveness of basic feature

models (according to Deinition 2.1) by implementing an algorithm

that, given a number of concrete features, computes all valid basic

feature models. We then calculated the number of distinct product

lines covered by these feature models compared to the total num-

ber of possible product lines.1

1Given a subset P ⊆ F of concrete features, the total number of distinct product lines is

calc(P) =
∑|P |
k=0

(|P |
k

)
(−1)k 22

|P |−k
. See https://oeis.org/A000371 for further information.

298

https://oeis.org/A000371

Is There a Mismatch between Real-World Feature Models and

Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

1 2 3 4 5
0

50

100

Number of Concrete Features

P
er
ce
n
ta
g
e
o
f
P
ro
d
u
ct
L
in
es

Expressible Not expressible

Figure 7: Percentage of product lines representable by basic

feature models.

Figure 7 depicts the results for a maximum of ive concrete fea-

tures. Approximately 60% of all product lines covering three con-

crete features can be expressed with basic feature models. Three

feature models covering inexpressible product lines are already ex-

empliied in Figure 3. Less than 0.0005% of all available product lines

can be expressed with basic feature models containing ive concrete

features. In theory, the likelihood that a desired product line is not

exactly covered by a basic feature model is thus surprisingly high.

RQ2: To what extent are simple and complex constraints

used in real-world feature models? We investigate whether

complex constraints are used in practice. We therefore analyzed

the aforementioned real-world feature models for occurrences of

pseudo- and strict-complex constraints. In Table 2, we summarize

the results for our evaluated feature models. Since all 116 CDL mod-

els represent the eCos kernel targeted to diferent hardware plat-

forms (i.e., slightly adapted), we only depict the minimum, maxi-

mum, and mean values. Based on the results, we can conidently

conclude that complex constraints are heavily used in real-world

feature models.

RQ3: To what extent do feature models increase by trans-

forming them to relaxed feature models? In Table 2, we de-

pict the increase of features and constraints for all analyzed feature

models after applying our transformation. In our automotive fea-

ture models, the maximum increase of features was measured with

2.58%, whereas the maximum increase of constraints was measured

with 43.9%. The number of features of the Linux kernel increased

by 582% and the number of constraints by 713%. Other KConfig

models (e.g., EmbToolkit) also increased considerably in the num-

ber of new features and constraints. On average, the number of fea-

tures for all 116 CDLmodels increased by 58%, whereas the number

of constraints increased by 74%.

The increase in size depends on the complexity (i.e., the number

of literals) of the complex constraints. We decided to also evaluate

the number of literals per unprocessed strict-complex constraint

and feature model. In Figure 8, we illustrate the results using box

plots. Highlighting the complexity of some cross-tree constraints,

we identiied a constraint in the Linux kernel containing over 230

literals. On average, a complex constraint in the CDL models con-

tains approximately ive literals and a complex constraint in the

automotive models contains approximately three literals.

The increase in size for all models ranges from below 1% to 1,403%

in features and 7% to 4,648% in cross-tree constraints. Depending

●●

●●

●●●

●

●

●

●●●

●●

●

●

●●

●●●

●

●

●

●

●●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●

●

●
●
●
●
●

●

●
●

●

●

●●

●●●●

●

●

●

●●

●●●●

●

●

●

●

●
●

●

●●

●

●●

●●
●
●
●●●●●●●●●
●

●

●

●●●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●●

●
●
●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●●●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●

●

●●●●●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●

●

●

●●

●
●●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●●●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●
●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●●●●
●
●

●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●●●●●●●●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●
●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●●

●

●●

●
●●●●●●
●

●

●

●

●●●●●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●●●●●

●●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●●

●

●●

●
●●●●●
●

1
2

5
1
0

5
0

2
0
0

N
u
m

b
e
r

o
f
L
it
e
ra

ls

Automotive 2.1

Automotive 2.2

Automotive 2.3

Automotive 2.4
axTLS

busybox 1.18.0

EmbToolkit

Linux 2.6.33.3
uClibc

uClinux−base

uClinux−distr.

All C
DL models

Figure 8: Number of literals of unprocessed complex con-

straints per evaluated feature model in logarithmic scale.

on the application, some models from CDL and KConfig could

be particularly ineicient to process after the transformation to

relaxed feature models is applied.

5.4 Threats to Validity

Internal Validity. We exported feature models from CDL and

KConfig to the FeatureIDE ile format. Both variability languages

slightly difer in their semantics compared to the semantics of fea-

ture models (e.g., feature attributes). However, we exported the

models according to the mapping concepts between CDL, KConfig,

and feature modeling [9]. Moreover, other analysis projects, such

as TypeChef [25], also translate KConfig to propositional logic,

indicating that propositional logic is a common base. We also pos-

sibly removed cross-tree constraints (e.g., constraints referencing

non-existent features), such that the resulting feature models may

be even less complex than the original variability models.

Another threat is that our transformation does not minimize

the number of additional features and constraints in general, as

no logical minimization is performed. For instance, we may falsely

classify a pseudo-complex constraint as strict-complex, leading

to additional abstract trees. However, a manual inspection of our

models revealed that these cases are rare.

External Validity. We evaluated 127 feature models in total,

from which 116 models are based on CDL. That is, all these mod-

els are representing the eCos kernel adapted to diferent hardware

platforms. We are aware that our results do not automatically trans-

fer to other real-world feature models. Nevertheless, we used three

diferent feature modeling languages and some of the largest pub-

licly available product lines, which relects that complex real-world

feature models heavily rely on complex constraints.

6 DISCUSSIONS ON RELATED WORK

Formal Semantics of Feature Models. The idea of deining a

general formal semantics to catch a variety of feature modeling di-

alects, and, thus, enhancing applicability of algorithms and research

in general, is not new. Czarnecki et al. [13] proposed a cardinality-

based notation to support their introduced concept of staged conig-

urations. They proposed a similar formal semantics to the one we

deined in this paper. Schobbens et al. [33] surveyed 12 feature mod-

eling languages and based upon them proposed a general formal

semantics called Free Feature Model [33]. They discussed proper-

ties such as expressive power, embeddability, and succinctness. All

299

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,

Jens Meinicke, and Ina Schaefer

Table 2: Overview of evaluated feature models including number of features and constraints before and after applying our

constraint elimination approach.

Au
to
m
ot
iv
e
2.
1
1

Au
to
m
ot
iv
e
2.
2
1

Au
to
m
ot
iv
e
2.
3
1

Au
to
m
ot
iv
e
2.
4
1

ax
TL
S
2

Bu
sy
Bo
x
1.
18
2

Em
bT
oo
lk
it
2

uC
lib
c
2

uC
lin
ux
-b
as
e
2

uC
lin
ux
-d
ist
2

Li
nu
x
2.
6.
33
.3
2

A
ll
CD
L
M
od
el
s
3

Size
Features 14,010 17,742 18,434 18,616 96 854 1,179 313 380 1,580 6,467 1,178≤1,259≤1,408

Constraints 666 914 1,300 1369 14 123 323 56 3,455 197 3545 816≤877≤956

Complex

Constraints

Strict 2.55% 3.93% 3.84% 5.62% 71.4% 73.9% 68.1% 64.2% 0.95% 21.3% 60.7% 9.00%≤10.3%≤12.0%

Pseudo 14.8% 12.3% 15.2% 13.8% 21.4% 13.0% 10.5% 10.7% 0.00% 26.3% 32.3% 10.0%≤11.2%≤13.0%

Sum 17.3% 16.2% 19.0% 19.4% 92.8% 86.9% 78.6% 74.9% 0.95% 47.6% 93.0% 19.0%≤21.5%≤25.0%

Increase
Features 0.62% 0.84% 1.29% 2.58% 115% 125% 1,403% 237% 85.5% 32.9% 582% 44.0%≤58.0%≤80.0%

Constraints 25.0% 22.4% 37.3% 43.9% 621% 578% 4,648% 841% 7.46% 190% 713% 65.0%≤74.0%≤88.0%
1 FeatureIDE model; 2 KConig; 3 Min ≤ Mean ≤ Max for all 116 CDL Models.

surveyed languages contain only simple constraints and the role of

complex constraints is not discussed. Our work extends their prior

theory and highlights the diferences in expressive power with real

numbers between basic feature models and feature models with

complex constraints.

Eliminating Cross-Tree Constraints. Only little emphasis in

the product-line community was put on the elimination of cross-

tree constraints. Broek and Galvao [43] discussed the elimination of

simple constraints by translating a feature model to a generalized

feature tree, a structure allowing features to occur multiple times in

diferent places including a potential negation. Our approach uses

abstract features and simple constraints. Therefore, it is applicable

for most tools requiring basic feature models as input. Gil et al. [17]

aim to prove that all cross-tree constraints can be eliminated for

the price of introducing a new set of features. Their approach is,

however, only addressed from a theoretical perspective. Both ap-

proaches are beyond the goals we intend to accomplish, since some

sort of constraints are typically supported in product-line research.

Consequences for Product-Line Research. Table 2 highlights
the importance of complex constraints, since there was not a single

evaluated feature model with only simple constraints. In the follow-

ing, we also discuss consequences for some application domains.

The automated analysis deals with the computer-aided extraction

of information from feature models (e.g., whether a feature is dead

or how many products a feature model represents) [7]. To this end,

common means include SAT solvers and BDD solvers, which use a

propositional formula as input and check whether it is satisiable.

However, there exist also approaches based on description logic [29]

or constraint satisfaction problems [49], for which it is unclear

how complex constraints can be transformed. In such cases, our

transformation can be applied, but analyses may take longer.

Some approaches for feature-model synthesis seem to be simpler

to adapt. She et al. [37] use a propositional formula as input to au-

tomatically derive a basic feature model. They additionally carry a

propositional rest in case the feature model is not equivalent to the

input formula. Acher et al. [1] use product descriptions for synthe-

sizing a basic feature model. They intentionally over-approximate

the conigurations, which can be prevented by additional complex

constraints. In both cases, our algorithm can be used to eliminate

the remaining constraints by converting them to simple constraints.

The problem of generating artiicial feature models with complex

constraints for evaluating the quality of analysis algorithms was

proposed by Thüm et al. [40]. There exist also ETHOM as part

of BeTTy [34], an algorithm for generating computationally hard

feature models. Nevertheless, ETHOM is based on an evolutionary

algorithm and generates only basic feature models. Our workmakes

aware that these are likely to be unrepresentative and generating

computationally hard complex constraints is non-trivial.

The optimal selection of features with non-functional properties

attached to them is either solved exactly (e.g., linear programming

or constraint satisfaction solving) or heuristically (e.g., using evolu-

tionary algorithms). To this end, feature models are transformed

into other problems, for which algorithms and solutions exist. Usu-

ally, a catalog is presented on how to transform the parts of a fea-

ture model (i.e., decomposition relations and cross-tree constraints).

If this catalog only covers simple constraints, our algorithm can be

applied for feature models using complex constraints. However, as

concluded before, scalability depends on the input feature model.

7 CONCLUSION

Various feature modeling languages exist to describe valid combi-

nations of features in a software product line. We showed that nu-

merous utilized languages in product-line research only use simple

constraints, which we conirmed to be a too simpliied assumption

for real-world feature models. We analyzed whether simple con-

straints are enough for feature modeling and proposed an algorithm

to eliminate complex constraints. Our conducted experiments show

that the algorithm leads to signiicantly increased feature models.

For large featuremodels, our algorithmmay render featuremodel

applications infeasible, but the elimination of complex constraints

is irrefutable for practical product-line engineering: researchers

and practitioners can more easily reuse tools and some research

gets easier applicable to real-world problems. Given our algorithm,

simple constraints are suicient if (a) users do not need to inspect

the intermediate representation and (b) if scalability with more

features or constraints does not pose any problems.

Nevertheless, we advocate that product-line research should

consider complex constraints as default in the future. We further

think that a community efort is needed to evaluate which and

how approaches tailored to basic feature models can be applied

to complex constraints. In conclusion, complex constraints are

heavily used in real-world feature models. Research on product

lines should either include them or at least discuss consequences

of their elimination, if feasible at all.

300

Is There a Mismatch between Real-World Feature Models and

Product-Line Research?

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany

A APPENDIX: REPLICATION PACKAGE

We provide access to 127 large real-world feature models with

thousands of features and cross-tree constraints in the FeatureIDE

ile format that can be easily exported to other feature modeling

dialects (e.g., SXFM). These feature models can be used in future

research in diferent analysis contexts. Furthermore, we provide the

source code and software artifacts necessary to translate a feature

model with complex constraints to a relaxed feature model, and to

reproduce our experimental results. The package is self-contained

such that all empirical results can be reproduced automatically.

In total, our replication package contains 123 feature models

in the FeatureIDE ile format translated from KConfig and CDL,

as well as 4 obfuscated feature models from our industry partner.

Furthermore, we provide two Java Eclipse projects and one Scala

project. The irst Eclipse project is for calculating the expressive

power of non-equivalent feature models with only simple con-

straints. The second Eclipse project is for analyzing our constraint

elimination approach empirically and to generate all statistics. For

the statistics, we rely on our constraint elimination algorithm,

which we integrated into FeatureIDE 3.1.02 and later versions. The

Scala project is an extended version of the Linux Variability Analy-
sis Project,3 ofering an exporter from KConfig to FeatureIDE.

The objective of the provided artifacts is to enable the analysis of

feature models with respect to their cross-tree constraints. We ofer

possibilities to translate a feature model with complex constraints

to a relaxed feature model (i.e., a basic feature model with abstract

features). Furthermore, the data set can be used for future evalu-

ations by other researchers. Our complex-constraint elimination

algorithm is integrated into the widely-used and long-living tool

FeatureIDE, bridging the gap between expressively complete and

lesser expressive feature modeling languages. For instance, FaMa

is a basic feature modeling ile format. The FaMa exporter of Fea-

tureIDE internally uses our algorithm to eliminate complex con-

straints if necessary.

Download and Setup. To ensure easy access for replication

of our experiments, we created a publicly available repository on

GitHub.4 Compulsory for executing the programs is a Java 7 com-

piler and possibly also a Scala compiler with a version higher than

2.11. The Java projects are initially prepared to be used with Eclipse.

Other than that, the repository is self-contained so that users can

readily download all artifacts and run the experiments. The repos-

itory inherits a detailed documentation explaining how to setup

and run the tools.

Source Code and Data. Our experimental results have been

successfully evaluated by the Artifact Evaluation Committee and

considered to be reusable. The repository consists of four major

parts.

(1) Analyzer for the Expressive Power of Basic Feature

Models. This tool is used in Section 5.3 to calculate the num-

ber of theoretically possible product lines that a basic feature

modeling languages can express. It takes a number of con-

crete features as input and computes all variations of a basic

2https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.1.0
3https://code.google.com/archive/p/linux-variability-analysis-tools/
4https://github.com/AlexanderKnueppel/is-there-a-mismatch

feature model. It then counts the number of non-equivalent

product lines that are represented by these feature models.

(2) Experimental Evaluation.All experimental results explained

in Section 5 can be calculated by this project. The user speci-

ies a list of feature models (or a folder containing feature

models) as input and the project generates all statistics (i.e.,

number of complex constraints, increase in size after trans-

lation, and complexity of all complex constraints).

(3) KConigTranslator.TheKConfig translator is an extended

version of the Linux Variability Analysis Project developed

by Berger et al. [9]. A user speciies a model in the exconfig

ile format (an extended KConfig ile format) and receives

an approximation of the feature model in the FeatureIDE

ile format.

(4) Large Real-World Feature Models. All 127 extracted and

evaluated feature models are provided in the FeatureIDE

ile format, both in its complex and relaxed version.

FeatureIDE Integration. Our algorithm described in Section 4

is integrated into FeatureIDE and is already usable in practice

(e.g., exporting to basic feature modeling formats). The context

menu of the model.xml provides the option to translate that fea-

ture model into a product-equivalent feature model with only sim-

ple constraints. The appearing dialog provides options to (1) chose

a strategy for all abstract trees (conjunctive normal form, negation
normal form, or a combination of both), (2) preserve the number of

conigurations leading to a doubling in the number of additional

require constraints, and (3) to additionally remove redundant con-

straints that may arise in the process.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions on the expressive

power of feature models with Arthur Hammer, Malte Lochau, Chris-

tian Kästner, Reimar Schröter, andGunter Saake.We thank Thorsten

Berger for his support in retrieving feature diagrams for real-world

feature models. Thanks to Niklas Lehnfeld for his help with devel-

oping the software artifacts. This work was supported by the Euro-

pean Union within project HyVar (grant agreement H2020-644298),

the DFG (German Research Foundation) under the Priority Pro-

gramme SPP1593, and NSF grant 1552944.

REFERENCES
[1] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles Van-

beneden, Philippe Collet, and Philippe Lahire. 2012. On Extracting Feature Mod-
els From Product Descriptions. In VaMoS. ACM, New York, NY, USA, 45ś54. DOI:
http://dx.doi.org/10.1145/2110147.2110153

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. 2011.
Managing Feature Models With Familiar: a Demonstration of the Language and
its Tool Support. In Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems. ACM, 91ś96.

[3] Ra’Fat Al-Msie ’deen, Marianne Huchard, Abdelhak-Djamel Seriai, Christelle Ur-
tado, and Sylvain Vauttier. 2014. Reverse Engineering Feature Models from Soft-
ware Conigurations Using Formal Concept Analysis. In CLA 2014: Eleventh Inter-
national Conference on Concept Lattices and Their Applications (CEUR-Workshop),
Sebastian Rudolph Karell Bertet (Ed.), Vol. 1252. Ondrej Krídlo, Košice, Slovakia,
95ś106. https://hal-auf.archives-ouvertes.fr/hal-01075524

[4] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wasowski. 2013. Clafer: Unifying Class and Feature Modeling. Software & Systems
Modeling (2013), 1ś35.

[5] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Proc. Int’l Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg, 7ś20.

301

https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.1.0
https://code.google.com/archive/p/linux-variability-analysis-tools/
https://github.com/AlexanderKnueppel/is-there-a-mismatch
http://dx.doi.org/10.1145/2110147.2110153
https://hal-auf.archives-ouvertes.fr/hal-01075524

ESEC/FSE’17, September 04-08, 2017, Paderborn, Germany Alexander Knüppel, Thomas Thüm, Stephan Mennicke,

Jens Meinicke, and Ina Schaefer

[6] David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. 2005. Automated
Reasoning on Feature Models. In Proc. Int’l Conf. Advanced Information Systems
Engineering (CAiSE). 491ś503.

[7] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615ś708.

[8] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2007.
FAMA: Tooling a Framework for the Automated Analysis of Feature Models. In
Proc. Int’l Workshop Variability Modelling of Software-Intensive Systems (VaMoS).
Technical Report 2007-01, Lero, Limerick, Ireland, 129ś134.

[9] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611ś
1640.

[10] Quentin Boucher, Andreas Classen, Paul Faber, and Patrick Heymans. 2010.
Introducing TVL, a Text-based Feature Modelling Language. In Proceedings of
the Fourth International Workshop on Variability Modelling of Software-intensive
Systems (VaMoSâĂŹ10), Linz, Austria, January. 27ś29.

[11] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. 2016. Reasoning About Product-line Evolution Using Complex
Feature Model Diferences. Automated Software Engineering 23, 4 (2016), 687ś733.

[12] Krzysztof Czarnecki and Ulrich Eisenecker. 2000. Generative Programming: Meth-
ods, Tools, and Applications. ACM/Addison-Wesley, New York, NY, USA.

[13] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
Cardinality-Based Feature Models and Their Specialization. Software Process:
Improvement and Practice 10 (2005), 7ś29.

[14] Krzysztof Czarnecki and Andrzej Wąsowski. 2007. Feature Diagrams and Logics:
There and Back Again. In Proc. Int’l Software Product Line Conf. (SPLC). IEEE,
Washington, DC, USA, 23ś34.

[15] Faezeh Ensan, Ebrahim Bagheri, and Dragan Gašević. 2012. Evolutionary Search-
based Test Generation for Software Product Line Feature Models. In Advanced
Information Systems Engineering. Springer, 613ś628.

[16] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. 2005. The PLUSS Approach: Do-
mainModeling with Features, Use Cases and Use Case Realizations. In Proceedings
of the 9th International Conference on Software Product Lines (SPLC’05). Springer-
Verlag, Berlin, Heidelberg, 33ś44. DOI:http://dx.doi.org/10.1007/11554844_5

[17] Yossi Gil, Shiri Kremer-Davidson, and Itay Maman. 2010. Sans Constraints?
Feature Diagrams vs. Feature Models. In Proc. Int’l Software Product Line Conf.
(SPLC). Springer, Berlin, Heidelberg, 271ś285.

[18] M. L. Griss, J. Favaro, and M. d’ Alessandro. 1998. Integrating Feature Modeling
with the RSEB. In Proceedings of the 5th International Conference on Software
Reuse (ICSR ’98). IEEE Computer Society, Washington, DC, USA, 76ś. http:
//dl.acm.org/citation.cfm?id=551789.853486

[19] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A
Genetic Algorithm for Optimized Feature Selection with Resource Constraints
in Software Product Lines. J. Syst. Softw. 84, 12 (Dec. 2011), 2208ś2221. DOI:

http://dx.doi.org/10.1016/j.jss.2011.06.026
[20] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the Notion of Vari-

ability in Software Product Lines. In Proceedings of the Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA ’01). IEEE Computer Society, Washington,
DC, USA, 45ś. DOI:http://dx.doi.org/10.1109/WICSA.2001.948406

[21] Evelyn Nicole Haslinger, Roberto Erick Lopez-Herrejon, and Alexander Egyed.
2013. On Extracting Feature Models from Sets of Valid Feature Combinations.
In International Conference on Fundamental Approaches to Software Engineering.
Springer, 53ś67.

[22] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21. Software Engineering Institute.

[23] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun Kim, and
Euiseob Shin. 1998. FORM: A Feature-Oriented Reuse Method with Domain-
Speciic Reference Architectures. Annals of Software Engineering 5, 1 (Jan. 1998),
143ś168.

[24] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas Leich,
FabianWielgorz, and Sven Apel. 2009. FeatureIDE: A Tool Framework for Feature-
Oriented Software Development. In Proc. Int’l Conf. Software Engineering (ICSE).
IEEE, Washington, DC, USA, 611ś614. Formal demonstration paper.

[25] Andy Kenner, Christian Kästner, Stefen Haase, and Thomas Leich. 2010. Type-
Chef: Toward Type Checking #Ifdef Variability in C. In Proc. Int’l Workshop
Feature-Oriented Software Development (FOSD). ACM, New York, NY, USA, 25ś32.
DOI:http://dx.doi.org/10.1145/1868688.1868693

[26] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2014.
Feature Model Synthesis with Genetic Programming. In International Symposium
on Search Based Software Engineering. Springer, 153ś167.

[27] Roberto E Lopez-Herrejon, Lukas Linsbauer, José A Galindo, José A Parejo, David
Benavides, Sergio Segura, and Alexander Egyed. 2015. An Assessment of Search-
based Techniques for Reverse Engineering Feature Models. Journal of Systems
and Software 103 (2015), 353ś369.

[28] Marcílio Mendonça, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software
Product Lines Online Tools. In Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA). ACM, New York, NY, USA, 761ś762.

[29] Mahdi Noorian, Alireza Ensan, Ebrahim Bagheri, Harold Boley, and Yevgen
Biletskiy. 2011. Feature Model Debugging Based on Description Logic Reasoning..
In DMS, Vol. 11. Citeseer, 158ś164.

[30] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer, Berlin, Heidel-
berg.

[31] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002. Ex-
tending Feature Diagrams with UML Multiplicities. In Proc. World Conf. Inte-
grated Design and Process Technology (IDPT).

[32] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. 2011.
Multi-Dimensional Variability Modeling. In VaMoS. ACM, NY, 11ś22.

[33] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic Semantics of Feature Diagrams. Computer Networks 51,
2 (2007), 456ś479.

[34] Sergio Segura, José A. Galindo, David Benavides, José A. Parejo, and Antonio Ruiz-
Cortés. 2012. BeTTy: Benchmarking and Testing on the Automated Analysis of
Feature Models. In Proc. Int’l Workshop Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, New York, NY, USA, 63ś71. DOI:http://dx.doi.org/10.
1145/2110147.2110155

[35] Sergio Segura, José A Parejo, Robert M Hierons, David Benavides, and Antonio
Ruiz-Cortés. 2014. Automated Generation of Computationally Hard Feature
Models Using Evolutionary Algorithms. Expert Systems with Applications 41, 8
(2014), 3975ś3992.

[36] Hazim Shatnawi and H Conrad Cunningham. 2017. Mapping SPL Feature Models
to a Relational Database. In Proceedings of the SouthEast Conference. ACM, 42ś49.

[37] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In Proc. Int’l Conf. Software
Engineering (ICSE). ACM, New York, NY, USA, 461ś470. DOI:http://dx.doi.org/
10.1145/1985793.1985856

[38] Jiangfan Shi, Myra B Cohen, and Matthew B Dwyer. 2012. Integration Testing of
Software Product Lines Using Compositional Symbolic Execution. In Fundamen-
tal Approaches to Software Engineering. Springer, 270ś284.

[39] Gabriel Coutinho Sousa Ferreira, Felipe Nunes Gaia, Eduardo Figueiredo, and
Marcelo de Almeida Maia. 2014. On the Use of Feature-Oriented Programming
for Evolving Software Product Lines Ð A Comparative Study. Science of Computer
Programming (SCP) 93, A (2014), 65 ś 85. DOI:http://dx.doi.org/10.1016/j.scico.
2013.10.010

[40] Thomas Thüm, Don Batory, and Christian Kästner. 2009. Reasoning about Edits to
Feature Models. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, Washington,
DC, USA, 254ś264.

[41] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract Features in Feature Modeling. In Proc. Int’l Software Product Line
Conf. (SPLC). IEEE, Washington, DC, USA, 191ś200.

[42] C. Reid Turner, Alexander L. Wolf, Alfonso Fuggetta, and Luigi Lavazza. 1998.
Feature Engineering. In Proc. Int’l Workshop Software Speciication and Design
(IWSSD). IEEE, Washington, DC, USA, 162ś164.

[43] PM van den Broek and I Galvao Lourenco da Silva. 2009. Analysis of feature
models using generalised feature trees. (2009).

[44] Arie van Deursen and Paul Klint. 2002. Domain-Speciic Language Design
Requires Feature Descriptions. Computing and Information Technology 10, 1
(2002), 1ś17.

[45] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius Liaaen. 2017. Automated
Product Line Test Case Selection: Industrial Case Study and Controlled Experi-
ment. Software and Systems Modeling (SoSyM) 16, 2 (2017), 417ś441.

[46] Markus Weckesser, Malte Lochau, Thomas Schnabel, Björn Richerzhagen, and
Andy Schürr. 2016. Mind the Gap! Automated Anomaly Detection for Potentially
Unbounded Cardinality-Based Feature Models. In International Conference on
Fundamental Approaches to Software Engineering. Springer, 158ś175.

[47] Jules White, Brian Dougherty, and Douglas C Schmidt. 2009. Selecting Highly
Optimal Architectural Feature Sets with Filtered Cartesian Flattening. Journal of
Systems and Software 82, 8 (2009), 1268ś1284.

[48] Jules White, José A Galindo, Tripti Saxena, Brian Dougherty, David Benavides,
and Douglas C. Schmidt. 2014. Evolving Feature Model Conigurations in Soft-
ware Product Lines. J. Systems and Software (JSS) 87, 0 (2014), 119ś136.

[49] Jules White, Douglas C. Schmidt, David Benavides, Pablo Trinidad, and Antonio
Ruiz-Cortés. 2008. Automated Diagnosis of Product-Line Coniguration Errors
in Feature Models. In Proc. Int’l Software Product Line Conf. (SPLC). IEEE, Wash-
ington, DC, USA, 225ś234.

302

http://dx.doi.org/10.1007/11554844_5
http://dl.acm.org/citation.cfm?id=551789.853486
http://dl.acm.org/citation.cfm?id=551789.853486
http://dx.doi.org/10.1016/j.jss.2011.06.026
http://dx.doi.org/10.1109/WICSA.2001.948406
http://dx.doi.org/10.1145/1868688.1868693
http://dx.doi.org/10.1145/2110147.2110155
http://dx.doi.org/10.1145/2110147.2110155
http://dx.doi.org/10.1145/1985793.1985856
http://dx.doi.org/10.1145/1985793.1985856
http://dx.doi.org/10.1016/j.scico.2013.10.010
http://dx.doi.org/10.1016/j.scico.2013.10.010

	Abstract
	1 Introduction
	2 Expressiveness of Feature Models in Product-Line Research
	3 Expressing Real-World Feature Models
	3.1 Feature Models with Complex Constraints
	3.2 Relaxed Feature Models

	4 Eliminating Complex Constraints
	4.1 Translation to a Relaxed Feature Model
	4.2 Translating Feature Model Dialects

	5 Evaluation and Discussions
	5.1 Open-Source Implementation
	5.2 Setup and Evaluated Feature Models
	5.3 Results and Discussion
	5.4 Threats to Validity

	6 Discussions on Related Work
	7 Conclusion
	A APPENDIX: Replication Package
	References

