
Equivalent Mutants in Configurable Systems:
An Empirical Study

Luiz Carvalho, Marcio Augusto
Guimar‹es, M‡rcio Ribeiro

UFAL
Macei—, Brazil

{luiz,masg,marcio}@ic.ufal.br

Leonardo Fernandes
UFPE

Recife, Brazil
lfmo@cin.ufpe.br

Mustafa Al-Hajjaji
pure-systems GmbH

University of Magdeburg
Magdeburg, Germany

mustafa.alhajjaji@pure-sytems.com

Rohit Gheyi
UFCG

Campina Grande, Brazil
rohit@dsc.ufcg.edu.br

Thomas ThŸm
TU Braunschweig

Braunschweig, Germany
t.thuem@tu-braunschweig.de

ABSTRACT
Mutation testing is a program-transformation technique that evalu-
ates the quality of test cases by assessing their capability to detect
injected arti!cial faults. The costs of using mutation testing are
usually high, hindering its use in industry. Previous research has
reported that roughly one-third of the mutants generated in single
systems are equivalents. In con!gurable systems, a set of mutation
operators that focus on preprocessor directives (e.g.,#ifdef) has
been proposed. However, there is a lack of existing studies that in-
vestigate whether equivalent mutants do occur with these operators.
To perform this investigation, we provide a tool that implements the
aforementioned mutation operators and we conduct an empirical
study using20C !les of four industrial-scale systems. In particular,
we provide examples of equivalent mutants and detailed informa-
tion, such as which mutation operators generate these mutants and
how often they occur. Our preliminary results show that nearly
40% of the generated mutants are equivalent. Hence, testing costs
can be drastically reduced if the community comes up with e"cient
techniques to avoid these equivalent mutants.

CCS CONCEPTS
• General and reference → Veri!cation ; • Software and its
engineering → Software testing and debugging ; Software ver-
i�cation; Software development process management;

KEYWORDS
Mutation Testing, Con!gurable Systems, Equivalent Mutants

ACM Reference Format:
Luiz Carvalho, Marcio Augusto Guimar‹es, M‡rcio Ribeiro, Leonardo Fer-
nandes, Mustafa Al-Hajjaji, Rohit Gheyi, and Thomas ThŸm. 2018. Equiva-
lent Mutants in Con!gurable Systems: An Empirical Study. InVAMOS 2018:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci!c permission and/or a
fee. Request permissions from permissions@acm.org.
VAMOS 2018, February 7–9, 2018, Madrid, Spain
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5398-4/18/02. . .$15.00
https://doi.org/10.1145/3168365.3168379

12th International Workshop on Variability Modelling of Software-Intensive
Systems, February 7–9, 2018, Madrid, Spain. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3168365.3168379

1 INTRODUCTION
Mutation testing [12] is a program-transformation technique that
injects arti!cial faults to check whether the existing test cases can
detect them. The quality of mutation testing largely depends on the
used mutation operators. Ideally, mutation operators represent re-
alistic faults, i.e., they mimic faults that programmers usually make.
Recently, researchers have proposed to apply mutation testing for
highly-con!gurable systems [2, 7, 16, 22, 26, 29]. Most of the exist-
ing approaches mutate feature models with aim of generating an
e#ective set of products or to assessing the quality of the generated
ones [7,16,22,26,29]. Since a large percentage of the faults occur in
the domain artifacts (i.e., source code) [1], mutating the source code
of con!gurable systems has a huge potential for fault detection.
While conventional mutation operators can be used, special muta-
tion operators are needed to mimic variability-related faults. Thus,
mutation operators that focus on preprocessor-based directives
(e.g.,#ifdef) have been proposed [2]. Evaluating these operators
showed that they can simulate variability-related faults [2].

Mutation testing su#ers from high costs [18]. One kind of mu-
tant increases such costs: the equivalent mutant [15]. An equivalent
mutant is useless because it shows the same behavior as the orig-
inal program [10, 18, 24]. Recent researches have found that the
rate of equivalent mutants in single systems might lie between 4%
and 39% [24]. In this context, it is unknown how often equivalent
mutants occur for industrial-scale con!gurable systems and which
mutation operators produce most equivalent mutants.

To evaluate whether equivalent mutants are indeed a problem for
con!gurable systems, we have implemented a tool, called#!"#$%,
to mutate#ifdefs in C code. In particular, we have implemented
10 out of 13 mutation operators proposed in prior work [2]. The
implemented operators make changes in the variability models, in
the domain artifact (i.e., source code) and in the mapping between
models and domain artifact. Then, we use the tool to generate
mutants in20!les of four preprocessor-based industrial-scale sys-
tems:OpenSSL, Vim, lighttpd, andnginx. To identify equivalent
mutants, we take the original !les and mutate them. Then, we

https://doi.org/10.1145/3168365.3168379
https://doi.org/10.1145/3168365.3168379

VAMOS 2018, February 7Ð9, 2018, Madrid, Spain Luiz Carvalho et al.

preprocess both !les with all macros (i.e.,#define directives) com-
binations to yield all con!gurations. Afterwards, to check whether
the corresponding con!gurations are equivalent, we use compiler
optimization and di# techniques [8, 21, 25, 27]. In case all original
con!gurations are equivalent to the corresponding mutant con!g-
urations, we de!ne this mutant astotally equivalent. In case only
a strict, but non-empty subset of con!gurations is equivalent, we
de!ne the mutant aspartially equivalent.

In particular, we present how often the total and partial equiva-
lent mutants occur for con!gurable systems. As a result, we inves-
tigate whether equivalent mutants in con!gurable systems are a
problem, i.e. whether researchers need to avoid them. In addition,
we investigate which mutation operators lead to more equivalent
mutants than other operators. This information can be helpful for
testers, because they can avoid applying these operators or use
them carefully.

Our results reveal that6.5%and31.7%of the generated mutants
are partially and totally equivalent, respectively. Regarding the
mutation operators, we !nd that the ones that add and remove
#ifdef conditions generate more totally equivalent mutants.

In summary, this paper provides the following contributions:

¥ A mutant generator tool that considers mutation operators
for con!gurable systems; and

¥ An empirical study to present numbers of partially and to-
tally equivalent mutants in C preprocessor-based con!g-
urable systems, i.e.,OpenSSL, Vim, lighttpd, andnginx. In
addition, we provide numbers about the operators that lead
to more equivalent mutants than others.

2 EQUIVALENT MUTANTS IN
CONFIGURABLE SYSTEMS

In the context of con!gurable systems, several approaches exploited
mutation testing to generate an e#ective set of products [7, 16] or
to assess the quality of a set of generated products [29]. For this
purpose, several mutation operators have been proposed to mutate
con!gurable systems. However, most of the existing ones focus
mainly on feature models [7, 16, 22, 29]. In general, the existing con-
ventional mutation operators in single-system engineering can also
be used to mutate con!gurable systems by applying these operators
to the generated products or to the original source code. Neverthe-
less, these mutation operators may not able to mimic faults that are
caused due to variability [1]. Thus, mutation operators that take the
variability into account may cause faults in con!gurable systems
that cannot be triggered using the conventional operators. Recently,
mutation operators for preprocessor-based con!gurable systems
have been proposed [2]. In this work, we consider the aforemen-
tioned operators to generate mutants in con!gurable systems.

The costs of mutation testing are usually high due to the large
amount of possible mutants [18]. Kintis et al. [21] show that, for
some cases, more than a third of these mutants for single systems are
equivalents. The equivalent mutant problem has been a barrier that
prevents mutation testing from being more widely used. To detect if
a program and one of its mutants are equivalent is undecidable [10].
As a result, the detection of equivalent mutants alternatively may
have to be carried out by humans, but manually checking mutant
equivalence is error-prone (people judged equivalence correctly in

about 80% of the cases [6]) and time consuming (approximately 15
minutes per equivalent mutant [31]).

In mutation testing for con!gurable systems, mutating a con-
!gurable programS yields a con!gurable mutantS!. To analyze
whether the mutant is equivalent, we need to compare each con-
!guration yielded bySagainst each corresponding con!guration
produced byS! for each valid con!guration.1

Given this context, we now explain the problem of equivalent
mutants in con!gurable systems and introduce the concepts of
totally andpartially equivalent mutants.

We assume a semantics function!S"c that takes a con!gurable
systemSand a con!gurationc to generate the respective product.
Two products!S"c and!S!"c are equivalent, denoted by!S!"c =
!S"c, if !S!"c preserves the observable behavior of!S"c. Otherwise,
they are not equivalent denoted by!S!"c ! !S"c. Furthermore, we
de!ne functionw f that takes a product!S"c as input and indicates
whether!S"c is well-formed or not:

w f (!S"c) =

!
true if !S"c has no compilation errors

f alse if !S"c has compilation errors

Given a con!gurable mutantM derived by applying a mutation
operatoro to a con!gurable systemS(i.e.,M = o(S)) and the set of
con!gurations ofSasCS, we de!ne that the con!gurable mutant
M is totally equivalent if and only if

(! c " CS : w f (!M"c) # !M"c = !S"c) $

(" c! " CS : w f (!M"c!)).

Similarly, a con!gurable mutantM is partially equivalent if and
only if

(" c " CS : w f (!M"c) $!M"c ! !S"c) $

(" c! " CS : w f (!M"c!) $!M"c! = !S"c!).

Notice the following two examples that illustrate the de!nition
presented. Figure 1 shows a code snippet from thevim con!gurable
system.2 At the top, we illustrate the original version of the code
and a mutant yielded by using the AICC (Adding#ifdef Condition
around Code) mutation operator [2] (see the added lines, i.e.,138
and157). In this example, the mutant istotally equivalent, as all
valid con!gurations generated by using this mutant are equivalent
to all con!gurations generated by the original. Observing from the
testerÕs perspective this mutant is useless, since no con!guration
produced a mutated program with a behavior di#erent from the
original program. Then all con!gurations can be discarded.

Figure 2 illustrates a mutant generated by using the RFIC (Re-
moving Feature of#ifdef Condition) mutation operator [2]. The
mutant removed part of the#ifdef condition (see line15at the top-
left corner of Figure 2). In this second example, we have apartially
equivalent mutant, as only three out of four valid con!gurations are
equivalent, i.e.,[], [FEAT_CRYPT], and [PROTO, FEAT_CRYPT].
From the point of view of the tester, this mutant may be interesting
to be tested, but only for the con!guration that produces behavior
di#erent from the original program. In this case, only the equivalent
con!guration need to be discarded.

1Valid con!guration in this context means compilable or speci!ed in artifacts such as
Feature Models and Con!guration Knowledge
2https://github.com/vim/vim/blob/edf3f97ae2af024708ebb4ac614227327033ca47/src/
crypt_zip.c

https://github.com/vim/vim/blob/edf3f97ae2af024708ebb4ac614227327033ca47/src/crypt_zip.c
https://github.com/vim/vim/blob/edf3f97ae2af024708ebb4ac614227327033ca47/src/crypt_zip.c

Equivalent Mutants in Configurable Systems:
An Empirical Study VAMOS 2018, February 7Ð9, 2018, Madrid, Spain

!

!" #$%&'()* +!"#$%&! '

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!!@A ++++?+25BCD*.5EFG+H+=+IJ

!@K I

!

!" #$%&'()* +!"#$%&! '

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!!@A ++++?+25BCD*.5EFG+H+=+IJ

!@K I

AICC

!

!" #$%&'()* +!"#$%&!
[]

[PROTO]
!

!" #$%&'()* +!"#$%&! '

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!!@A ++++?+25BCD*.5EFG+H+=+IJ

!@K I

[FEAT_CRYPT]
!

!" #$%&'()* +!"#$%&! '

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!!@A ++++?+25BCD*.5EFG+H+=+IJ

!@K I

[PROTO, FEAT_CRYPT]

!

!" #$%&'()* +!"#$%&! '

!@ #$;+)*;$%*) 4LMN71OPQR7>+SS+)*;$%*) 4RPT7T>+

! =

UU #)*;$%* +VRWN7M1XMQY1Z[R4D*.59+&>+?+\+D*.5EFG+H+=+J+\+I+

! =

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!@A ++++VRWN7M1XMQY1Z[R425BCD*.59+03E$G+H+;-3<E$G+]+0*</>J

!@K I

!@^ #*%)$;

Original

!

!" #$%&'()* +!"#$%&! '
[]

[PROTO]

[FEAT_CRYPT]
!

!" #$%&'()* +!"#$%&! '

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!!@A ++++?+25BCD*.5EFG+H+=+IJ

!@K I

[PROTO, FEAT_CRYPT]
!

!" #$%&'()* +!"#$%&! '

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!!@A ++++?+25BCD*.5EFG+H+=+IJ

!@K I

!

!" #$%&'()* +!"#$%&! '

!@ #$;+)*;$%*) 4LMN71OPQR7>+SS+)*;$%*) 4RPT7T>+

! =

UU #)*;$%* +VRWN7M1XMQY1Z[R4D*.59+&>+?+\+D*.5EFG+H+=+J+\+I+

! =

!"^ #$;)*; +VRWN7M1XMQY1Z[R

!", "(#) +&-./012$/1)*&3)*4&-./05060*17+85060*9+&:6-1(+8;-3<+ =>+?

!@A ++++VRWN7M1XMQY1Z[R425BCD*.59+03E$G+H+;-3<E$G+]+0*</>J

!@K I

!@U #*%)$;

!@^ #*%)$;

Figure 1: Example of totally equivalent mutant. All con!gurations generated by the mutant (AICC) are the same when com-
pared to all con!gurations generated by the original code.

Analogously to single systems, equivalent mutants increase costs
in con!gurable systems. This means that executing the test suite
against the con!gurations of the original con!gurable system will
lead to the same results as executing the test suite against the cor-
responding con!gurations of the mutant. This way, the equivalent
mutant problem is even more challenging for con!gurable systems,
as we need to deal with it in many di#erent con!gurations.

In this paper, we present an empirical study to raise the aware-
ness of equivalent mutants in con!gurable systems. In particular,
we focus on totally and partially equivalent mutants, as the ones
we present in this section.

3 EMPIRICAL STUDY
To better understand the problem of equivalent mutants in con!g-
urable systems, we perform an empirical study. In what follows,
we present the settings of our study (Section 3.1), the results and
discussion (Section 3.2), and threats to validity (Section 3.3).

3.1 Settings
In our study, we intend to answer the following research questions:

Table 1: Open-source con!gurable systems we use in our
study.

System Domain LOC
OpenSSL TSL and SSL protocol 269,621

Vim Text editor 312,201
lighttpd Web server 48,043
nginx Http server 120,459

¥ RQ1:How often do totally and partially equivalent mutants
occur for con!gurable systems?

¥ RQ2: Which mutation operators lead to more equivalent
mutants than other operators?

AnsweringRQ1 is important to understand the equivalent mu-
tant problem for con!gurable systems. AnsweringRQ2will help (i)
testers to be aware of costly operators and thus avoid them; and (ii)
researchers to know which mutation operators need to be improved.
To answer these questions, we select20C !les of four industrial-
scale con!gurable systems that contain preprocessor directives. We
list the systems we use in Table 1. To make our analysis feasible,
we randomly select !les with at most six di#erent feature macros.

VAMOS 2018, February 7Ð9, 2018, Madrid, Spain Luiz Carvalho et al.

13 #include	!"#$%&! '

13 #include	!"#$%&! '

15 #if	defined(FEAT_CRYPT)	||	defined(PROTO)	

 …

77 #define	UPDATE_KEYS_ZIP(keys,	c)	{	\	keys[0]	=	…	;	\	}	

 …

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

154 				UPDATE_KEYS_ZIP(zs->keys,	to[i]	=	from[i]	^	temp);

156 }

158 #endif

13 #include	!"#$%&! '

15 #if	defined(FEAT_CRYPT)	

 …

77 #define	UPDATE_KEYS_ZIP(keys,	c)	{	\	keys[0]	=	…	;	\	}	

 …

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

154 				UPDATE_KEYS_ZIP(zs->keys,	to[i]	=	from[i]	^	temp);

156 }

158 #endif

Original

13 #include	!"#$%&! '
[]

[PROTO]

13 #include	!"#$%&! '

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[FEAT_CRYPT]

13 #include	!"#$%&! '

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[PROTO, FEAT_CRYPT]

13 #include	!"#$%&! '

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

RFIC

13 #include	!"#$%&! '
[]

[PROTO]

[FEAT_CRYPT]

13 #include	!"#$%&! '

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

[PROTO, FEAT_CRYPT]

13 #include	!"#$%&! '

139 "(#) 	crypt_zip_decode(cryptstate_T	*state,	char_u	*from	…)	{

 154 				{	zs->keys[0]	=	…	};

156 }

Figure 2: Example of partially equivalent mutant. One corresponding con!guration is di"erent, i.e., [PROTO].

To generate the mutants, we rely on the mutation operators for
con!gurable systems proposed in prior work [2]. For our evaluation,
we have implemented10out of 13operators and packaged them in
a tool called#!"#$% (Mutation of #ifdef).3 In Table 2, we present
the operators that we have implemented and provide a description
for each of them. We did not consider three mutation operators
proposed previously: RFDM (Remove Feature from Model), MFDM
(Modify Feature Dependency in Model), and CACO (Conditionally
Applying Conventional Operator). The reasons for excluding these
operators are the following. The operators RFDM and MFDM re-
quire feature models, which are not available for the con!gurable
systems used in our evaluation, whereas operator CACO leads to
conventional mutants, which can bias the experiment to results
similar of previous studies in single systems [21, 27].

We execute#!"#$% on each !le to generate the mutants. We
then generate all con!gurations available in both the original !les
as well as the mutated ones, and perform a comparison as illus-
trated in Figures 1 and 2. In case a certain con!guration does not
compile in the original code, we do not analyze such con!guration
in any mutant. In addition, if the mutant does not compile for a
certain con!guration, we disregard this con!guration from our
numbers. For example, suppose a mutant with four con!gurations.
3https://github.com/lzmths/mutaf

Table 2: Mutation operators implemented in #MUTAF.

Mutation Operator Acronym Description
Remove Conditional Feature
De!nition RCFD Removes a feature de!nition.

Add Condition to Feature
De!nition ACFD

Adds an #ifdef condition around
an existing de!ne statement.

Adding #ifdef Condition
Around Code AICC

Adds an #ifdef or #ifndef condition
around a code fragment.

Adding Feature to#ifdef
Condition AFIC

Manipulates an #ifdef condition
by inserting an additional logical
dependency to the expression.

Remove #ifdef Condition RIDC Deletes an #ifdef condition.
Removing Feature of #ifdef
Condition RFIC

Removes the occurrence of a
feature from an #ifdef expression.

Replacing #ifdef Directive
with #ifndef Directive RIND

Changes an existing #ifdef
directive to an #ifndef directive.

Replacing #ifndef Directive
with #ifdef Directive RNID

Changes an #ifndef directive
to an #ifdef directive.

Removing Complete #ifdef
Block RCIB Deletes an entire #ifdef block.

Moving Code Around #ifdef
Blocks MCIB

Moves a certain code fragment
around an #ifdef block.

If three are equivalents and one does not compile, we count this
mutant as totally equivalent. This de!nition may seem strange
to some researchers because by having a con!guration di#erent
from the original, this mutant could not be called totally equivalent.
However, we are observing from the testerÕs perspective. In this
case, the mutant is completely useless and is not suitable for use in

https://github.com/lzmths/mutaf

Equivalent Mutants in Configurable Systems:
An Empirical Study VAMOS 2018, February 7Ð9, 2018, Madrid, Spain

mutation testing. Not counting mutants that do not compile is in
accordance to mutation testing previous research, as they produce
invalid mutations [20].

To detect equivalent mutants, we rely on compiler optimizations
for checking equivalence [8, 21, 25]. So, a mutant is equivalent to
the original program if, after the transformations made by compile
optimization, they end up with the same object code. Notice that this
approach is sound in the sense that two equal binaries mean that
the programs have the same behavior. However, we do not detect
equivalent mutants with the same behavior, but with di#erent object
codes. This leads us to have no false positives. But, this approach is
de!nitely not free to have false negatives.

We compile the con!gurations with thegcc4 compiler. This
compiler has many levels of optimization. In this study, we decided
to setup the compiler to use the option-O3. This option has been
used by previous studies to detect equivalent mutants [21,27]. Then,
we check whether two binaries are equivalent by using thediff5

utility with the $ag Ò--binary.Ó
We execute our study on a Linux kernel 4.9.0 ,gcc 6.3.0-11, and

diff 3.5-3.

3.2 Results and Discussion
In this section, we present the results and answer our research
questions. All results of our study are available online: https://
lzmths.github.io/vamos2018/. Figure 3 shows the distribution of
percentages of the partially and the totally equivalent mutants for
each analyzed system. We observe that large percentages of the
mutants are totally equivalent, especially for con!gurable systems
Vim andnginx, with median values 61.6% and 76.5%, respectively.
Table 3 presents the results in more detail and answerRQ1. For
each !le, we illustrate the number of preprocessor macros, the
number of valid mutants (the ones that compile), and the number
of partially equivalent and totally equivalent mutants.

Figure 3: Partially and totally equivalent mutants.

For example, when considering thecrypt_zip.c !le (Vim),#!"&
#$%generated48valid mutants. This !le has3preprocessor macros
which give us8 possible con!gurations, without considering infor-
mation from potential constrains (e.g., feature model). Notice that
4https://gcc.gnu.org/
5https://www.gnu.org/software/di#utils/

Table 3: Number of partially and totally equivalents mutants
for con!gurable systems.

Project File Macros
Valid

Mutants
Partially

Equivalent
Totally

Equivalent

OpenSSL

crypto/rand/rand_lib.c 4 98 4 4.1% 11 11.2%
ssl/s3_enc.c 3 35 4 11.4% 7 20.0%
ssl/ssl_sess.c 4 168 19 11.3% 12 7.1%
ssl/bio_ssl.c 1 6 3 50.0% 1 16.7%
ssl/ssl_cert.c 3 25 2 8.0% 4 16.0%

Vim

src/hashtab.c 1 86 1 1.2% 53 61.6%
src/crypt_zip.c 3 48 9 18.8% 30 62.5%
src/json.c 6 66 0 0.0% 34 51.5%
src/nbdebug.c 4 22 6 27.3% 15 68.2%
src/popupmnu.c 4 87 2 2.3% 47 54.0%

lighttpd

src/bu#er.c 3 220 17 7.7% 20 9.1%
src/chunk.c 1 125 6 4.8% 2 1.6%
src/fdevent_libev.c 1 28 0 0.0% 0 0.0%
src/fdevent_poll.c 2 30 2 6.7% 13 43.3%
src/keyvalue.c 1 7 0 0.0% 3 42.9%

nginx

core/ngx_rwlock.c 3 24 2 8.3% 16 66.7%
core/ngx_string.c 3 10 3 30.0% 3 30.0%
mail/ngx_mail.c 3 17 0 0.0% 13 76.5%
http/ngx_http_ups_rr.c 4 56 0 0.0% 48 85.7%
core/ngx_inet.c 5 73 0 0.0% 58 79.5%

Total 59 1,231 80 6.5% 390 31.7%

18.8%and62.5%of the mutants are partially and totally equivalent,
respectively. The examples we present in Figures 1 and 2 are from
the crypt_zip.c !le.

In general, the number of totally equivalent mutants is higher
than the number of partially equivalent mutants. In particular,6.5%
and31.7%of the mutants are partially and totally equivalent, re-
spectively. In this sense, these results answer ourRQ1and evidence
the importance of creating technical solutions to avoid equivalent
mutants in con!gurable systems and thus reduce costs.

To answerRQ2, we refer to Table 4. The mutation operators that
contribute most with totally equivalent mutants are AFIC, RFIC,
and RIDC. On the other hand, RCIB is the one that most contributes
to partially equivalent mutants. To better understand the results,
we refer to the code snippets presented in Figure 4. We now proceed
by explaining and discussing the results from the operators that
caused the highest and lowest numbers.

AFIC adds a feature to#ifdef condition. RFIC, on the other
hand, removes. In case the original code contains, for example,#if
defined(WIN32), AFIC may yield a mutant with the following:#if
defined(WIN32) && defined(BUFFER_SIZE) (Figure 4(A)). Here,
when comparing the original code with the mutant, only one con-
!guration will be di#erent, i.e., when we enableWIN32 and disable
BUFFER_SIZE. In our evaluation, this only one Òdi#erentÓ con!gu-
ration (such as enablingA and disablingB) did not compile in the
majority of the cases. Because we do not count the con!gurations
that do not compile, we ended up with many totally equivalent
mutants. The same situation happens for the RFIC mutation opera-
tor. AFIC and RFIC generated92.0%and85.7%of totally equivalent
mutants, respectively.

RIDC removes the#ifdef. In case the#ifdef is encompassing
declarations of variables and functions (see Figure 4(B)), they will
be unused after applying RIDC and preprocessing the code with the
macro disabled (e.g.,HAVE_PCRE_H). Unused variables and functions
are detected and properly removed during the compiler optimiza-
tion, yielding equivalent mutants. However, when applying RIDC,
we may also have compilation errors, i.e., undeclared variables and
functions (Figure 4(C)). As con!gurations that do not compile are

https://lzmths.github.io/vamos2018/
https://lzmths.github.io/vamos2018/
https://gcc.gnu.org/
https://www.gnu.org/software/diffutils/

VAMOS 2018, February 7Ð9, 2018, Madrid, Spain Luiz Carvalho et al.

!"# $%&'()*+(),

!"# $+&-(*.(/"-$0$1,

2!3$-&3!"&- 45678*9:;<=5;> ?

)!"*8$@AB)!",

2&"-!3

!"# $%&'()*+(),

2!3$-&3!"&- 45678*9:;<=5;> ?

)!"*8$@AB)!",

2&"-!3

!"# $+&-(*.(/"-$0$1,

Original

MCIB

C!D&*#$E,

2!3-&3$ ***<FG6H;8I***

/EJCK41L11?,

2&"-!3

C!D&*#$E,

Original

RCIB

2!3-&3$ M7G6*N<H6*M

C!D&*#$!,

.("C#$.OJ+ $@&++A#+,

!"# $&++(33,

2&"-!3

C!D&*#$!,

.("C#$.OJ+ $@&++A#+,

!"# $&++(33,

Original

RIDC

Unused variables

2!3-&3$ M7G6*N<H6*M

A.+&*K&PBJ'/&$@KB,

2&"-!3

Q

2!3-&3$ M7G6*N<H6*M

KB0KB%RSKBTKB%RS/C&-U,

2&"-!3

Original

RIDC

2!3-&3$ M7G6*N<H6*M

A.+&*K&PBJ'/&$@KB,

2&"-!3

Q

KB0KB%RSKBTKB%RS/C&-U,

Undeclared variable

2-&3!"&$ V:556H*W;X6$LY

Q

2!3$-&3!"&- 4Z;[\]?

Q

2&"-!3

Original

AFIC

2-&3!"&$ V:556H*W;X6$LY

Q

2!3$-&3!"&- 4Z;[\]?$^^

$$$$-&3!"&- 4V:556H*W;X6?

Q

2&"-!3

(A) (D)(B) (C) (E)

Figure 4: Examples of applying some mutation operators.

not present in our numbers, we increase the odds of having totally
equivalent mutants (e.g., for four con!gurations, three are equiv-
alent and one does not compile). RIDC generated81.6%of totally
equivalent mutants.

MCIB generated a moderate number of totally equivalent mu-
tants (36.6%), especially in cases where the operator moved vari-
able declarations around#ifdef blocks (see Figure 4(D)). AICC
generated a few number of totally equivalent mutants. In general,
the totally equivalent cases happened when the operator adds the
#ifdef with a macro that has already been de!ned by using the
#define directive (see the example presented in Figure 1).

RIND and RNID generated a few number of totally equivalent
mutants (7.7%and10.3%, respectively). The main reason is that the
con!gurations tend to be di#erent when compared to the original
code due to the di#erent blocks that are added and removed after
preprocessing the code.

RCIB generated a moderate number of partially equivalent mu-
tants, i.e.,39.3%. For example, when removing the entire block en-
compassed by#ifdef ___COVERITY___, the con!guration where
___COVERITY___ is disabled is equivalent (Figure 4(E)). On the other
hand, in case such macro is enabled, we have a non-equivalent con-
!guration. This balance between equivalent and non-equivalent
con!gurations increases the odds of having partially equivalent
mutants.

3.3 Threats to Validity
The low number of con!gurable systems we used represents a threat
to external validity. To alleviate this threat, we selected projects of
di#erent sizes and domains. We intend to conduct further exper-
iments in future using di#erent sizes of con!gurable systems in
order to generalize the outcomes of this paper.

Our implementation of#!"#$% is a threat to internal validity.
Because there is no formal speci!cation of the mutation operators,
the implementation may vary according to the tool. For example,

Table 4: Number of partially and totally equivalents mutants
per mutation operator.

File
Valid

Mutants
Partially

Equivalent
Totally

Equivalent
AFIC 50 4 8.0% 46 92.0%
RFIC 7 1 14.3% 6 85.7%
RIDC 141 10 7.1% 115 81.6%
RCFD 3 0 0.0% 2 66.7%
ACFD 63 5 7.9% 41 65.1%
MCIB 164 2 1.2% 60 36.6%
AICC 679 34 5.0% 106 15.6%
RCIB 56 22 39.3% 8 14.3%
RNID 29 0 0.0% 3 10.3%
RIND 39 2 5.1% 3 7.7%
Total 1,231 80 6.5% 390 31.7%

for some mutation operators we decided to avoid an exponential
growth of the number of mutants: AICC (Adding#ifdef Condition
Around Code) only applies#ifdef and#ifndef around functions.
AFIC (Adding Feature to#ifdef Condition) only adds a logical
dependency to the expression in case the added feature is de!ned
in the same !le. However, for other mutation operators, we have
expanded the scope: RIDC and RCIB do not work only with#ifdef.
They also consider preprocessors with#ifndef, #if, and#else
condition. To check whether the tool is creating the mutants as
expected, we sampled !ve mutants of each mutation operator and
manually analyzed them. Moreover, thegcc compiler and thediff
utility may also have faults. Nevertheless, we minimize this threat
by relying on those systems that are heavily tested, deployed, and
used in practice.

In this paper, we use the brute-force (all possible con!gurations)
in !les with at most six macros. It represents a threat because
many con!gurable systems have a dedicated building tool that
!lters the possible con!gurations before performing compilation
(eg.:kconfig). Our intention was to assess whether equivalent
mutants represent a problem for con!gurable systems. Notice that

Equivalent Mutants in Configurable Systems:
An Empirical Study VAMOS 2018, February 7Ð9, 2018, Madrid, Spain

this approach would not scale in case we decide to analyze !les
with many more macros.

The aforementioned manual analysis also represents a threat.
We alleviate such a threat by double checking the questionable
cases with a second researcher.

In our evaluation, we rely on compiler optimizations to check
equivalence. Despite sound (no false positives), this technique may
have false negatives. In this context, our results are conservative
and represent a lower bound.

4 RELATED WORK
Recently, several mutation testing approaches have been proposed
for highly con!gurable systems [2, 4, 7, 13, 14, 16, 29]. Al-Hajjaji et
al. [2] propose mutation operators for preprocessor-based con!g-
urable systems and show that applying these operators can cause
real faults. They aim with these operators to make changes that
cause variability-related faults. In our work, we implemented the
majority of those mutation operators and use them to generate
mutants. We considered these generated mutants in our evaluation.

Arcaini et al. [7] propose a fault-based approach that considers
!nding faults in feature models. For this purpose, they propose a set
of mutation operators that mutate feature models. These mutated
feature models are tested against con!gurations that are generated
from the original ones. Reuling et al. [29] present a fault-based
approach that generates an e#ective set of products with respect to
the ability of !nding faults. To achieve their goal, they propose a
set of atomic and complex mutation operators that mutates feature
diagrams. Similarly, Henard et al. [16] propose two mutation op-
erators to alter the propositional formula of feature models. Using
these operators, they generate a set of con!gurations that has the
ability to detect the mutated feature models. Papadakis et al. [26]
report that considering fault-based approaches (i.e., mutation test-
ing) to generate a set of products is more e#ective than generating
products with combinatorial interaction testing with respect to
the ability of detecting faults. Lackner et al. [22] assess the testing
quality of con!gurable systems by exploiting mutation testing to
measure the capability of detecting faults. With their approach, they
consider model-based mutation operators. The aforementioned ap-
proaches [7, 16, 22, 26, 29] consider only mutation operators on the
feature model level.

However, Abal et al. [1] report that most of the reported faults
are located in the domain artifacts (i.e., source code). In addition,
they do not consider any techniques that may reduce the mutation
testing costs. In our work, we mutate the source code of con!gurable
systems. Furthermore, we investigate how often the equivalent
mutants occur in con!gurable systems and how many equivalent
mutants are generated by each mutation operator.

Al-Hajjaji et al. [4] propose to reduce the cost by decreasing the
possibility of generating equivalent mutants. For this purpose, they
propose to combine static analysis and T-wise testing to indicate
in which code segments the mutation operators should be applied.
However, further experiments are required to evaluate the e#ec-
tiveness of their approach. In addition, Reuling et al. [29] propose
two strategies to reduce the number of mutants, namely mutation
selection and higher-order mutation. With mutation selection, they
select a set of operators randomly. Furthermore, they also exploit

the similarity notion in operators selection, where they consider
dissimilar operators to be selected. However, these strategies can be
applied to the implemented mutation operators in future to reduce
the mutation testing cost.

For highly con!gurable systems, several approaches have been
proposed to select a set of products to be tested [3, 17, 19, 28]. For
example, Johansen et al. [19], Al-Hajjaji et al. [3], Perrioun et al. [28]
propose T-wise testing approaches to sample con!gurable systems.
Henard et al. [17] suggest an alternative approach to T-wise testing
by proposing a search-based approach that selects a set of products.
Our approach can be used to assess the quality of the generated
products with respect to the capability to !nd faults. Furthermore,
numerous product prioritization approaches have been proposed
to increase the fault detection rate by ordering products under
test [5, 23, 30]. These prioritization approaches can be applied to
prioritize the generated mutants, which may increase the testing
e#ectiveness.

In previous work, Braz et al. [9] proposes a change-centric ap-
proach that aims to compile only the con!gurations that a#ected
by the changes. This previous approach can be used to avoid the
equivalent mutants by considering only con!gurations that a#ected
by changes as a result of applying the mutation operators.

In single systems, as surveyed by Jia and Harman [18], e#orts
have been made to reduce the mutation testing costs. For example,
some approaches propose that selecting only small percentages
of mutants are su"cient to achieve a high accuracy of mutation
score [11, 32]. However, applying these techniques of the single-
system engineering may achieve promising results in the context of
con!gurable systems. In a recent work [15], we propose an approach
to avoid generating equivalent mutants. In particular, we propose
rules that are required to be applied during mutants generation.
Therefore, the aforementioned approach may be also considered in
future in the con!gurable systems to reduce the mutation testing
cost.

5 CONCLUSIONS
We empirically assess whether the equivalent mutant in con!g-
urable systems is a problem. In particular, we distinguish between
partially and totally equivalent mutants in con!gurable systems. In
our evaluation, we have implemented a tool, called#!"#$%, to mu-
tate#ifdefs in C code. Then we execute our tool inOpenSSL, Vim,
lighttpd, nginx. To check whether the mutants are indeed equiva-
lents, we rely on compiler optimizations and di# techniques. Our
results revealed that31.7%of the mutants are totally equivalent,
i.e., no con!guration generated by these mutants are useful for the
mutation testing, and 6.5% of the mutants are partially equivalents,
i.e., only a few con!gurations would be useful for testing. We also
found that mutation operators that add or remove#ifdef condi-
tions generate totally equivalent mutants more often. Our results
bring evidence that equivalent mutants is a non-negligible problem
for con!gurable systems. In addition, our evaluation is important
to make testers aware of costly mutation operators. Last but not
least, our !ndings are important to improve the mutation operators
we explored in this paper.

As future work we intend to investigateduplicated mutants.
Duplicated mutants happen when two mutants are equivalent to

VAMOS 2018, February 7Ð9, 2018, Madrid, Spain Luiz Carvalho et al.

each other. In this case, only one of them is useful. In addition,
we intend to improve#!"#$% to: (i) automatically execute the test
suite, (ii) compute the mutation score, and (iii) integrate techniques
to avoid those kinds of equivalent and duplicated mutants.

ACKNOWLEDGMENTS
We would like to thank the Federal Institute of Alagoas (IFAL) for
partially supporting this work. In addition, this work has been par-
tially supported by CAPES/PROCAD grant 175956, CAPES/PGCI
grant 117875, CNPq (grants 306610/2013-2, 460883/2014-3, 307190/
2015-3, 308380/2016-9, 409335/2016-9), FAPEAL PPGs 14/2016 (60030
000435/2017), INES - National Institute of Science and Technol-
ogy for Software Engineering, grants CNPq 465614/2014-0, Federal
Ministry of Education and Research in project CrESt (funding id:
01|S16043N) , and by the German Research Foundation within the
project IMoTEP (grant agreement LO 2198/2-1). The responsibility
for the content rests with the authors.

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs in

the Linux Kernel: A Qualitative Analysis. InProceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. 421Ð432.

[2] Mustafa Al-Hajjaji, Fabian Benduhn, Thomas ThŸm, Thomas Leich, and Gunter
Saake. 2016. Mutation Operators for Preprocessor-Based Variability. InProceed-
ings of the Tenth International Workshop on Variability Modelling of Software-
intensive Systems. 81Ð88.

[3] Mustafa Al-Hajjaji, Sebastian Krieter, Thomas ThŸm, Malte Lochau, and Gunter
Saake. 2016. IncLing: E"cient Product-line Testing Using Incremental Pairwise
Sampling. InProceedings of the International Conference on Generative Program-
ming: Concepts Experience. 144Ð155.

[4] Mustafa Al-Hajjaji, Jacob KrŸger, Fabian Benduhn, Thomas Leich, and Gunter
Saake. 2017. E"cient Mutation Testing in Con!gurable Systems. InProceedings
of the International Workshop on Variability and Complexity in Software Design
(VACE ’17). 2Ð8.

[5] Mustafa Al-Hajjaji, Thomas ThŸm, Malte Lochau, Jens Meinicke, and Gunter
Saake. 2017. E#ective Product-Line Testing Using Similarity-Based Product
Prioritization. Software & Systems Modeling (2017). To appear.

[6] Jr. Allen Troy Acree. 1980.On Mutation. Ph.D. Dissertation. Georgia Institute of
Technology.

[7] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. 2015. Generating tests for
detecting faults in feature models. InSoftware Testing, Veri�cation and Validation.
1Ð10.

[8] Douglas Baldwin and Frederick Sayward. 1979.Heuristics for Determining Equiv-
alence of Program Mutations. Technical Report. DTIC Document.

[9] Larissa Braz, Rohit Gheyi, Melina Mongiovi, M‡rcio Ribeiro, Fl‡vio Medeiros, and
Leopoldo Teixeira. 2016. A Change-centric Approach to Compile Con!gurable
Systems with #ifdefs. InProceedings of the International Conference on Generative
Programming: Concepts and Experiences. 109Ð119.

[10] Timothy Budd and Dana Angluin. 1982. Two notions of correctness and their
relation to testing.Acta Informatica 18, 1 (1982), 31Ð45.

[11] Timothy Alan Budd. 1980.Mutation Analysis of Program Test Data. Ph.D. Disser-
tation. Yale University, New Haven, CT, USA.

[12] Richard DeMillo, Richard Lipton, and Frederick Sayward. 1978. Hints on Test
Data Selection: Help for the Practicing Programmer.Computer 11, 4 (1978),
34Ð41.

[13] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Mike Papadakis, Axel Legay, and
Pierre-Yves Schobbens. 2014. A Variability Perspective of Mutation Analysis. In
Proceedings of the International Symposium on Foundations of Software Engineering.
841Ð844.

[14] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. 2016. Featured Model-based Mutation Analysis.
In Proceedings of the International Conference on Software Engineering. 655Ð666.

[15] Leonardo Fernandes, M‡rcio Ribeiro, Luiz Carvalho, Rohit Gheyi, Melina Mon-
giovi, AndrŽ Santos, Ana Cavalcanti, Fabiano Ferrari, and JosŽ Carlos Maldonado.
2017. Avoiding Useless Mutants. InProceedings of the 16th International Conference
on Generative Programming: Concepts Experience. 187Ð198.

[16] Christopher Henard, Mike Papadakis, and Yves Le Traon. 2014. Mutation-based
generation of software product line test con!gurations. InInternational Sympo-
sium on Search Based Software Engineering. 92Ð106.

[17] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Hey-
mans, and Yves Le Traon. 2014. Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-Wise Test Con!gurations for Software
Product Lines.IEEE Transaction Software Engineering 40, 7 (2014), 650Ð670.

[18] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development
of Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011),
649Ð678.

[19] Martin Fagereng Johansen, ¯ystein Haugen, and Franck Fleurey. 2012. An
Algorithm for Generating T-Wise Covering Arrays from Large Feature Models.
In Proceedings of the International Software Product Line Conference. ACM, NY,
USA, 46Ð55.

[20] RenŽ Just. 2014. The Major mutation framework: E"cient and scalable mutation
analysis for Java. InProceedings of the International Symposium on Software Testing
and Analysis. 433Ð436.

[21] Marinos Kintis, Mike Papadakis, Yue Jia, Nicos Malevris, Yves Le Traon, and
Mark Harman. 2017. Detecting Trivial Mutant Equivalences via Compiler Opti-
misations.IEEE Transactions on Software Engineering PP, 99 (2017), 1Ð1.

[22] Hartmut Lackner and Martin Schmidt. 2014. Towards the assessment of software
product line tests: a mutation system for variable systems. InProceedings of
the 18th International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools-Volume 2. 62Ð69.

[23] Sascha Lity, Mustafa Al-Hajjaji, Thomas ThŸm, and Ina Schaefer. 2017. Op-
timizing Product Orders Using Graph Algorithms for Improving Incremental
Product-line Analysis. InProceedings of the International Workshop on Variability
Modelling of Software-intensive Systems. 60Ð67.

[24] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2014.
Overcoming the Equivalent Mutant Problem: A Systematic Literature Review
and a Comparative Experiment of Second Order Mutation.IEEE Transactions on
Software Engineering 40, 1 (2014), 23Ð42.

[25] A. Je#erson O#utt and W. Michael Craft. 1994. Using compiler optimization tech-
niques to detect equivalent mutants.Software Testing, Veri�cation and Reliability
4, 3 (1994), 131Ð154.

[26] Mike Papadakis, Christopher Henard, and Yves Le Traon. 2014. Sampling program
inputs with mutation analysis: Going beyond combinatorial interaction testing.
In Software Testing, Veri�cation and Validation. 1Ð10.

[27] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Com-
piler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E#ective
Equivalent Mutant Detection Technique. InIEEE International Conference on
Software Engineering. 936Ð946.

[28] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon. 2010.
Automated and Scalable T-Wise Test Case Generation Strategies for Software
Product Lines. InProceedings of the International Conference on Software Testing,
Veri�cation and Validation. IEEE, Washington, 459Ð468.

[29] Dennis Reuling, Johannes BŸrdek, Serge RotŠrmel, Malte Lochau, and Udo Kelter.
2015. Fault-Based Product-Line Testing: E#ective Sample Generation Based on
Feature-Diagram Mutation. InProceedings of the the International Conference on
Software Product Line. 131Ð140.

[30] Ana B. S‡nchez, Sergio Segura, and Antonio Ruiz-CortŽs. 2014. A Comparison of
Test Case Prioritization Criteria for Software Product Lines. InProceedings of the
International Conference on Software Testing, Veri�cation and Validation. 41Ð50.

[31] David Schuler and Andreas Zeller. 2013. Covering and Uncovering Equivalent
Mutants.Software Testing, Veri�cation and Reliability 23, 5 (2013), 353Ð374.

[32] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013.
Operator-Based and Random Mutant Selection: Better Together. InProceedings
of the International Conference on Automated Software Engineering. IEEE, 92Ð102.

	Abstract
	1 Introduction
	2 Equivalent Mutants in Configurable Systems
	3 Empirical Study
	3.1 Settings
	3.2 Results and Discussion
	3.3 Threats to Validity

	4 Related work
	5 Conclusions
	Acknowledgments
	References

