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ABSTRACT
Software evolution is an inevitable process in the development of
long-living software systems as, e.g., changes of requirements de-
mand corresponding adaptations. For software product lines, the
incorporation of evolution in the development process gets even
more complex due to the vast number of potential variants and
the set of reusable domain artifacts and their interrelations. To
allow for the application of existing analyses also for combined
dimensions of variants and versions, recent evolution-aware va-
riability modeling techniques are insufficient for capturing both
version and variant information by the same means. In this paper,
we propose an extension of annotative variability modeling, also
known as 150% modeling, to tackle evolution and variability by the
same means. The so called 175% modeling formalism allows for
the development and documentation of evolving product lines. A
175% model combines all variant-specific models of all versions of a
product line, where elements are mapped to features and versions
to specify which version of a variant contains the element. We
discuss potential application scenarios for 175% modeling. Further-
more, we propose a bidirectional transformation between 175% and
higher-order delta models to exploit the benefits of both modeling
formalisms, when solely one type is available.
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1 INTRODUCTION
Software evolution is an inevitable challenge not only for single-
software systems but also for variant-rich software systems, e.g.,
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software product lines [33] (SPLs). Due to changes, e.g., in require-
ments or standards, software has to be adapted [6, 26]. For SPLs,
i.e., a family of similar software systems with explicit commonality
and variability, the incorporation of evolution in their development
is challenging [6]. Due to the vast number of variants of an SPL, an
evolution step and its changes to reusable SPL domain artifacts may
introduce inconsistencies caused, e.g., (1) by the loss of information
about artifacts and their interactions, or (2) by the addition of incor-
rect or unintended artifact dependencies. To tackle the challenges,
development techniques for evolving SPLs are required incorpora-
ting both variability and evolution as first class entities, where the
application of changes to artifacts is specified and well-documented.
By capturing the evolution history, those techniques facilitate rea-
soning about already applied evolution steps and further support
planning of upcoming changes. In addition, those techniques also
enable the analysis of variants and SPL versions to detect induced
artifact inconsistencies to be fixed.

For an SPL, various variability modeling techniques exist [35] ca-
tegorized as annotative, compositional, and transformative already
supporting variability-aware analyses [41]. In annotative approa-
ches, all variant-specific models are combined in one super model,
also called 150% model, facilitating family-based analyses [41] such
as conditioned model slicing [16], SPL test-suite generation [8], or
SPL verification [20]. In contrast, compositional techniques specify
reusable model fragments to be composed to realize a variant sup-
porting feature-based analysis [41]. Transformational approaches
such as delta modeling [9] define transformations to a core model
to transform the core into a variant-specific model and facilitate,
e.g., incremental model-based SPL testing [10, 25]. However, for
exploiting the benefits of those modeling techniques also for SPL
evolution, concepts for handling evolution need to be incorporated
to enable the documentation and analysis also for SPL versions.

Existing approaches consider SPL evolution on the feature model
level [31, 32, 37], by adopting delta modeling [15, 24, 38], by using
aspect-oriented programming [2, 3, 13], or specify SPL evolution
templates [29]. However, to the best of our knowledge no approach
exists in the literature for the annotative category of variability mo-
deling techniques such that version as well as variant information
is captured together in a single model, i.e., elements are annota-
ted with both version and variability conditions. Such a modeling
concept provides an overview not only of one SPL version in time
but also of the complete SPL history, e.g., to understand its past
and to plan its future. In addition, the application of family-based
analyses [41] also to evolving SPLs is established by taking not only
variant information but also the evolution history into account to
improve comprehension and development of evolving SPLs.

In this paper, we contribute the following:
(1) We propose 175% modeling to capture evolution and varia-

bility for the development and documentation of evolving
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SPLs by the same means. 175% modeling represents an ex-
tension of 150% modeling, where an instance combines all
variant-specific models of all SPL versions. To specify which
elements are contained in which version of a variant, ele-
ments are not solely annotated with features but also with
versions. In this paper, we abstract from feature model evo-
lution [32] but assume that, for an SPL version, a respective
feature model exists allowing for the definition of feature
annotations of elements.

(2) We discuss benefits and limitations of 175% modeling and
propose potential application scenarios.

(3) 175% modeling does not support, e.g., incremental change-
oriented analysis of evolution steps which is crucial for SPL
regression testing as, e.g., provided by higher-order delta
modeling [24]. To overcome this drawback and to exploit
the benefits of both formalisms, we provide a bidirectional
transformation between 175% and higher-order delta models,
where one type is used to derive the opposing type.

(4) We provide a proof sketch using complete induction to show
the soundness of the transformation, i.e., the transformed
models are equivalent w.r.t. the derivable variant-specific
models for the respective SPL versions.

2 FOUNDATIONS
An SPL [33] defines a family of similar software product variants
PSPL = {p0, . . . ,pm } sharing common and variable domain arti-
facts, where the commonality and variability between variants is
explicitly specified in terms of features FSPL = { f1, . . . , fn }, i.e.,
customer-visible system functionality. Each variant pi ∈ PSPL is
characterized by a certain combination of features called feature
configuration Fpi ⊆ FSPL. The potential combinations are restricted,
e.g., by using a feature model FMSPL [17], where every Fpi satisfies
the constraints defined by FMSPL. Based on a configuration Fpi ,
reusable domain artifacts are assembled. For the development of
those artifacts and, thus, for SPL development, variability modeling
techniques like 150% modeling or delta modeling are applied [35].

150% Modeling. 150% modeling captures the variability of an
SPL by merging all variant-specific models in a super model M150,
where elements e ∈ EM150 are annotated, e.g., with a Boolean expres-
sion over features φe ∈ B(FSPL) as presence condition. By B(FSPL),
we refer to the set of all Boolean expressions defined over FSPL.
For annotations, an annotation function α150 : EM150 → B(FSPL) is
defined, i.e., for every e ∈ EM150 a presence condition α150(e) = φe
exists and α150(e) respects the constraints of FMSPL. For elements
that are part of all variant-specific models denoting common core
functionality, the presence condition is specified as true. To this
end, a 150% model is defined as tuple (M150,α150) comprising a mer-
ged super model M150 and the corresponding annotation function
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Figure 1: Sample 150% Model (M150,α150)

α150. In general, M150 does not represent a valid variant-specific
model. To derive a model for a variant pi ∈ PSPL, solely elements
e ∈ EM150 are selected from M150 for which the presence condition
φe is satisfied by the respective feature configuration Fpi .

Example 2.1. Consider the sample (M150,α150) shown in Fig. 1
specifying the behavior of a sample SPL as state machine compri-
sing the states S1, S2, and S3 as well as the transitions t1 − t6. State
machine M150 merges all variant-specific models, where core ele-
ments are annotated with true , e.g., transition t1 is contained in all
variants, and otherwise with a feature expression, e.g., transition t6
is annotated with the conjunction f3 ∧ f1 of features f3 and f1.

A 150% model provides an overview over the commonality and
variability of all SPL variants. To also incorporate SPL evolution,
we propose an extension of 150% modeling to capture both variant
and version information in a so called 175% model in Sect. 3. In
previous work [24], we introduced higher-order delta modeling as
an extension of delta modeling [9] to also capture SPL evolution,
where we focused on the differences between SPL versions. To
exploit the modeling benefits of both formalisms, we present a
bidirectional transformation in Sect. 4 and describe (higher-order)
delta modeling in the following.

Delta Modeling. In delta modeling [9], the differences between
variants are specified explicitly in terms of transformations called
deltas. Based on a predefined core model mcore implementing a core
variant pcore ∈ PSPL, deltas δ ∈ ∆SPL are defined to transform mcore
into a model mi of variant pi ∈ PSPL. By ∆SPL, we refer to the set
of all deltas of an SPL. A delta δ = (OPδ ,φδ ) captures change ope-
rations OPδ = {op1, . . . , opk } ⊆ OPSPL, such as additions (add e)
or removals (rem e) of elements. For brevity, we abstract from the
modification of elements (mod(e, e ′)) as they can be encoded as
a removal and addition of the (modified) element. The set OPSPL
denotes the set of all change operations defined over the set of all
elements of the current SPL, where further OPSPL is a subset of the
universe of all possible change operations OP. Besides change ope-
rations, a delta comprises an application condition φδ , i.e., a Boolean
expression over features. Based on a given configuration Fpi for
a variant pi , for each delta δj ∈ ∆SPL, its application condition is
evaluated if Fpi satisfies φδj . If the application condition of a delta
is satisfied by Fpi , it is applied to mcore to obtain mi . To this end,
we define a delta model DMSPL = (mcore,∆SPL) of an SPL as tuple
comprising its core model and the set of applicable deltas.

Higher-Order DeltaModeling. For the evolution of an SPL de-
fined by a DMSPL, we introduced an extension of delta modeling [9]
in previous work [24]. Higher-order delta modeling specifies the
evolution of a DMSPL into its new version DM′

SPL via higher-order
deltas. A higher-order delta δH = {opH1 , . . . , op

H
l } ⊂ OPHSPL trans-

forms a DMSPL by changing its delta set ∆SPL based on the applica-
tion of evolution operations. An evolution operation opH ∈ OPHSPL
specifies additions (addδ ) and removals (remδ ) of deltas δ from/to
a DMSPL. By OPHSPL, we refer to the set of evolution operations defi-
ned over the universe OP. We again abstract from modifications,
e.g. an exchange of the application condition of a delta, and also
apply the removal-addition encoding. We further abstract from
feature model evolution [32] but assume that, for an SPL version, a
respective FMSPL exists building the basis for the definition of appli-
cation conditions of added deltas. The application of a higher-order
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Figure 2: Sample Higher-Order Delta Model DMH
hist

delta denotes an evolution step of the complete evolution history
captured in a higher-order delta model. A higher-order delta model
DMH

hist = (mcore,∆
H ) comprises a core model mcore and a sequence

of higher-order deltas ∆H = (δH0 , δ
H
1 , . . . ,δ

H
r ). Based on the incre-

mental application of ∆H , the evolved version DM i
SPL of the delta

model DM i−1
SPL is obtained, where the application of δH0 combined

with the mcore defines the initial delta model version DM0
SPL.

Example 2.2. Consider the sample DMH
hist in Fig. 2, where we

adapted higher-order delta modeling [24] for state machines. Ba-
sed on the core state machine shown in Fig. 2a, the initial δH0 =
{addδ1, addδ2} adds the deltasδ1 andδ2 to realize the firstDM0

SPL =

(mcore, {δ1,δ2}) of the sample SPL. For versionDM1
SPL = (mcore, {δ2,

δ3,δ4}), we specify the removal of δ1 and the addition of δ3 and δ4
in δH1 , where δ2 stays constant for both versions. In each delta δi ,
+ denotes an addition and − a removal of a model element.

3 175% MODELING FORMALISM
For the development of an evolving SPL, its versionsΘ = {θ0, ...,θn }
caused by evolution steps are important starting from the initial
version θ0 up to its present version θn . Each θi ∈ Θ defines version-
specific domain artifacts, e.g., a 150% model (M150,α150)θi contai-
ning valid elements EθiM150

and annotations αθi150 for θi . Existing
techniques for the evolution of SPL domain artifacts are mainly ca-
tegorizable as transformative [15, 22, 24, 38] or compositional [2, 3,
13]. To the best of our knowledge no approach exists that captures
variant and version information by the same means in an annota-
tive fashion. Such a modeling formalism (1) provides an overview
over all variants of all SPL versions and (2) enables the application
of family-based analyses [41] also to evolving SPLs. Therefore, we
propose an extension of 150% modeling called 175% modeling.

For 175% modeling, we first map elements e ∈ EM175 and versions
θ ∈ Θ to specify in which version an element is contained in the
derivable version-specific 150% model (M150,α150)θ . By EM175 , we
refer to the set of all elements of a 175% model, i.e., the joined set of
all 150% model elements EθiM150

. Therefore, we define the temporal
annotation functionψ : EM175 → P(Θ) such that, for every element
e ∈ EM175 , the set of versions ψ (e) = {θk , . . . ,θl } is returned in
which e is contained in at least one model.

Second, we combine the version mapping with feature anno-
tations to capture variability and version information of model
elements at the same time. We adapt the annotation function α150
of 150% models to incorporate the combined information in a new
annotation function α175 : EM175 × P(Θ) → P(Θ×B(FΘSPL)), where

S1

S2

S3S4
(θ0 ∧ true) ∨
(θ1 ∧ true)

(θ1 ∧ f2)

(θ0 ∧ true) ∨
(θ1 ∧ true)

t1

t2t3 t4
(θ0∧¬f2)∨
(θ1 ∧ true)

t5(θ0 ∧ f2)

t6
(θ0 ∧ (f3 ∧ f1))∨
(θ1 ∧ (f3 ∧ f1))

t7t8

t9

(θ1 ∧ (f2 ∧ f3))

t10

Figure 3: Sample 175% Model (M175,α175)

FΘSPL denotes the set of all features of the evolution history. For
each element e , the annotation function α175(e,ψ (e)) = {(θk ,φ

θk
e ),

. . . , (θl ,φ
θl
e )} returns the pairs of versions θi and feature conditi-

ons φθie for which the element is contained in the version-specific
150% model with annotation αθi150(e) = φ

θi
e . As an element e is con-

tained in different SPL versions θi , the associated annotations φθie
potentially differ as well, e.g., due to restrictions in which variants
the element should be contained or due to feature model evolu-
tion [31, 32, 37]. To allow for valid feature annotations in a 175%
model, for each θi , we require a respective feature model FMθi

SPL to
ensure a valid mapping in α175. To this end, we assume the exis-
tence of a FMθi

SPL and a feature set FθiSPL for each version θi to allow
for consistent derivations of versions of variant-specific models.

We define a 175% model (M175,α175) similar to a 150% model,
whereM175 represents the super model merging all variant-specific
models of all SPL versions, andα175 denotes the annotation function
specifying version and feature conditions for all elements e ∈ EM175 .
We are able to derive (1) a single variant-specific modelmθ

p for a gi-
ven version θ and configuration Fθp , (2) a 150% model (M150,α150)θ

for a given θ , (3) a restricted 175% model (M175,α175)Θ
′

for a gi-
ven set of versions Θ′ ⊆ Θ, or (4) a variant-specific 175% model
(M175,α175)Fp,Θ

′

for a given Fp and subset Θ′ ⊆ Θ. The process of
the version derivation is similar to the one defined for 150% mo-
deling. For case (1), an element e ∈ EM175 is selected to be contained
in the resulting modelmθ

p , if a pair (θ ,φθe ) ∈ α175(e,ψ (e)) exists for
the given version, where further Fθp satisfies φθe . For brevity, we use
the tuple (θ ,φθe ) notation, where the version information is lightly
adaptable as interval or formula representation. In cases (2), (3), and
(4), the selection of elements to obtain a version-restricted model
is simpler as we only have to evaluate if the element is mapped to
a given version θ ∈ ψ (e) or subset of versions Θ′ ∩ψ (e) , ∅. For
case (4), we further take the given configuration into account.

A 175% model captures the evolution history Θ up to the present
version θn , but an SPL may evolve to its next version θn+1 in the fu-
ture. A 175%model has to be adapted to capture θn+1. As a 175%mo-
del comprises all elements contained in at least one variant-specific
model version, we extend the set of all elements E175 ∪Eθn+1150 as first
step. Then, for all elements, we update their version mappingψ (e)
and their annotation α175(e,ψ (e)) to be consistent with the exten-
ded version set Θ∪θn+1. Elements that were valid for θn , i.e., there
exists an annotation (θn ,φ

θn
e ), but are not contained in the new

version (M150,α150)θn+1 , become invalid such that their annotation
comprises no new tuple (θn+1,φθn+1e ) < α175(e,ψ (e)). For elements



VAMOS 2018, February 7–9, 2018, Madrid, Spain S. Lity et al.

added for the first time to the 175% model, the version mapping
ψ (e) = {θn+1} and the annotation α175(e,ψ (e)) = {(θn+1,φ

θn+1
e )}

are initialized, where φθn+1e is defined by αθn+1150 (e). Elements that
are not contained in the last version θn , but were already added to
the 175% model in prior versionsψ (e) , ∅, become valid again, i.e.,
their version mapping and annotation are extended similar to newly
added elements. As last step, we update the version mapping and
the annotation of elements that are contained in the last and also
in the new version, i.e., either the feature annotation φθne = φ

θn+1
e

stays the same or is newly set to φθn+1e .

Example 3.1. Consider the sample (M175,α175) shown in Fig. 3
capturing the evolution of our sample SPL. Similar to the 150% mo-
del from Ex. 2.1,M175 merges all variant-specific state machines, but
also all their versions. Elements are annotated with a disjunction of
their tuples (θi ,φθie ) ∈ α175(e,ψ (e)), where the version and feature
annotation of a tuple are combined via a conjunction.

Benefits, Limitations and Potential Applications.We focus
on a generic, artifact-independent definition of 175% modeling.
Hence, our approach is adaptable for various artifact types al-
ready used for annotative variability modeling [35], e.g., source
code [21, 42], feature-annotated state machines [16], or featured
transition systems [20]. We presented an adaptation for feature-
annotated state machines in Ex. 3.1. Similarly, for source code,
where variability is realized, e.g., preprocessor-based [21] or via
variability encoding [42], each pair (θi ,φθie ) is implemented by
representing the version information as (preprocessor) variables,
where, again, several pairs of version and feature annotations for a
source code block are connected via disjunction. Besides the artifact-
independency, the comprehensive as well as unified representation
and, hence, the overview of the evolving SPL are further benefits
as we are able to identify and understand interdependencies bet-
ween variable artifacts and also their versions. Due to the captured
evolution history, we further enable the support of planning fu-
ture evolution steps by incorporating the information of previous
evolution changes and their impact.

Furthermore, based on 175% modeling, the application of family-
based analyses [41] also to evolving SPLs is achievable. For example,
variability-aware slicing [16, 18] can be enhanced to also incorpo-
rate versions for the analysis, e.g., of changes and their impact on
SPL versions improving the comprehension and development of
evolving SPLs as we can examine how artifacts or even features and
their interdependencies are evolved. In addition, quality assurance
of evolving SPLs benefits from extending existing techniques. By
using a 175% model as test model, SPL test-case generation [8] can
be enhanced, where not only the reusability of test cases between
variants but also across SPL versions is derived during generation.
For family-based SPL verification [20, 40], a 175% model used as
functional specification will enable a verification of SPL behavior
and changed behavior between SPL versions.

However, the formalism also has limitations mainly in the size
and, thus, in the complexity of the resulting model. This is a general
drawback of annotative variability modeling [35] but is increased by
the incorporation of SPL versions. To cope with this drawback, the
formalism allows for the projection to restricted models w.r.t. given
feature configurations and/or versions. The complexity further

compromise a manual creation of the model. Hence, tool support
for the model creation as well as a systematic process is crucial
and much needed. By providing tool support, we either apply and
create a 175% model directly when used as front end or apply the
formalism as back end in, e.g., variant control systems [23].

Another limitation is that 175% modeling does not allow for, e.g.,
an analysis about changes to the set of variants of subsequent SPL
versions as, e.g., provided by higher-order delta modeling [24]. This
information is important for SPL regression testing to reduce the
testing redundancy by focusing on changes and their impact caused
by an evolution step. To exploit the benefits of both formalisms, a
transformation between them is crucial, where one type is used to
derive the opposing type.We propose a bidirectional transformation
between 175% and higher-order delta modeling in the next section.

4 BIDIRECTIONAL TRANSFORMATION
For using both formalisms during SPL development to benefit from
(1) an overview provided by 175% modeling, and (2) change impact
analysis provided by higher-order delta modeling, we propose a
generic transformation between both model types incorporating
version and variant information. Kowal et al. [19] proposed a similar
transformation by building a 150% performance-annotated activity
diagram from a given delta model to also exploit the benefits of
two formalisms, i.e., the application of family-based performance
analysis. We describe both transformation directions separately
and assume the respective input model to be given.

TransformationHigher-OrderDeltaModel to 175%Model.
For the transformation of a higher-order delta model DMH

hist into an
equivalent 175% model (M175,α175), we exploit properties of delta
modeling [9, 24]: First, we have a predefined coremcore building the
basis for the definition of deltas and their evolution via higher-order
deltas. We use mcore also as core of the 175% model to be genera-
ted, where elements are further integrated by incorporating the
element operations (add e, rem e). Second, the version and feature
mapping of an element is given by (higher-order) deltas, i.e., feature
annotations are derived taking the application conditions of deltas
affecting the element into account and the version is denoted by
the evolution step specified by a higher-order delta. In addition,
the application order of higher-order deltas is defined such that no
ambiguity for version and feature annotations can be introduced.
Those properties allow for a unique and automated transforma-
tion shown in Alg. 1. We use the function updateAnnotation to
abstract from the concrete annotation process but describe each
case denoted by a respective tag, e.g., core, in the following.

Based on a given DMH
hist, we integrate mcore by adding all ele-

ments and annotating them with (θ0,φe = true) as the core repre-
sents the commonality of all variants of the initial version θ0 (cf. l. 1-
3). If a core element is not contained in all variants of θ0, a delta
capturing a remove operation is added via the initial higher-order
delta δHθ0 to be handled in the second part of the algorithm (cf. l. 4ff).

We iterate over all δH ∈ ∆H to integrate new elements and to
derive their version and feature annotations. For valid annotations,
we analyze the captured evolution and change operation combina-
tions of δH , split them based on their operation types, and provide
a sorted list of the combinations to be incorporated (cf. l. 5). This
step is required as the different types of operation combinations
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Algorithm 1: Transformation DMH
hist to (M175,α175)

1 forall e ∈ Emcore do
2 addElement(e, M175);
3 updateAnnotation(e, θ0, core, true);

4 forall δH ∈ ∆H do
5 List operations = splitAndSortOperations(δH );
6 Set visited = ∅;
7 forall (opH , op) ∈ operations do
8 if opH = add δ ∧ op = add e then
9 if e < EM175 then
10 addElement(e, M175);

11 visited ∪ updateAnnotation(e, θδH , addadd, φδ );

12 else if opH = add δ ∧ op = rem e then
13 visited ∪ updateAnnotation(e, θδH , addrem, φδ );

14 else if opH = rem δ ∧ op = rem e then
15 visited ∪ updateAnnotation(e, θδH , remrem, φδ );

16 else if opH = rem δ ∧ op = add e then
17 visited ∪ updateAnnotation(e, θδH , remadd, φδ );

18 updateAnnotation(EM175 \ visited, θδH , none);

have a distinct influence on the resulting feature annotation of
the θδH to be handled. For instance, the addition of a delta that
adds a new element (add(add(e))) has to be integrated before the
addition of a delta which removes the element for a specific feature
condition (add(rem(e))) as the removal operation can only update
the annotation if the element was added to the 175% model via the
first operation combination. The splitting of captured evolution and
change operation combinations of δH results in the sequence: (1)
add(add(e)), (2) add(rem(e)), (3) rem(rem(e)), and (4) rem(add(e)).
We iterate over this sequence to update the annotations of ele-
ments (cf. l. 7ff), where we add all elements for which an update is
applied to the set visited.

For the combination addadd (cf. l. 8), we check if the element
is already contained in the 175% model and if not it is added and
annotated with (θδH ,φδ ), i.e., with the version captured by δH and
the application condition of the newly added delta. Otherwise, we
examine two cases. First, the element was removed in a prior version
based on a higher-order delta. In this case, there is no annotation in
the last version and we annotate the element with (θδH ,φδ ) to be
valid again for the current θδH . Second, there exists another delta in
the last version that adds the element. As an element is only added
to a model via one delta in a delta model version, there has to exist
another operation combination that removes the obsolete delta to
ensure a valid delta model during higher-order delta application.
For each annotation, we record which part is specified by a delta
φe = φδ ′∧φδ ′′∧ . . . to update the annotation by connecting the last
annotation and the application condition of the new delta φe ∧ φδ .
We remove the application condition of the obsolete delta, e.g., φδ ′′ ,
when the respective operation combination is handled by Alg. 1.

For combination addrem (cf. l. 12), i.e., the addition of a delta
removing an element, we connect the existing annotation φe ∧¬φδ
with the negated delta application condition. By using the negation,
the updated feature annotation restricts the element to be not con-
tained in a variant of θδH for which Fθp satisfies φδ . The existing
annotation φe is (1) used from the last version, if there exists no
other operation on the element for this version, (2) introduced by
the addadd combination, or (3) is defined by the integration of
mcore. The updated annotation is defined by (θδH ,φe ∧ ¬φδ ).

For combination remrem (cf. l. 14), i.e., the removal of a delta
removing an element, we remove the restriction denoted by the
negated application condition from the existing annotation φe . The
updated annotation results in (θδH ,φ

−¬φδ
e ), where φ−¬φδe repre-

sents the existing annotation without the obsolete part ¬φδ .
For combination remadd (cf. l. 16), i.e., the removal of a delta ad-

ding an element, we remove the delta-specific annotation from the
existing annotation φe denoted by φ

−φδ
e similar to the combination

remrem. In case the removed delta specified the only possibility to
add the captured element, i.e., the element is not contained in any
variant-specific model of θδH , we define no updated annotation.

As last step (cf. l. 18), we update the version and feature an-
notations of all elements EM175 \ visited in the 175% model that
are not influenced by the current higher-order delta δH such that
(θδH ,φe ) ∈ α175(e,ψ (e)) holds.

As the result of Alg. 1, we obtain an equivalent 175% model in
which all versions of variants derivable from the input DMH

hist are
merged into one super model. Based on this model, we are able to
apply evolution-aware family-based analyses as discussed in Sect. 3
to support the development of evolving SPLs when the evolution is
documented by higher-order delta modeling [24].

Example 4.1. By applying Alg. 1 to the DMH
hist from Ex. 2.2, we

obtain the (M175,α175) shown in Fig. 3. There is only one difference
between the depicted model and the result of the transformation
as transition t4 should be annotated by true ∧ ¬f2 in the initial
version which can be shortened to ¬f2 as defined in the model.

Transformation 175%Model toHigher-OrderDeltaModel.
The transformation of a 175% model (M175,α175) into an equivalent
higher-order delta model DMH

hist is not unique as one model has
to be chosen as core mcore to derive (higher-order) deltas. For the
core, several options exist, i.e., either (1) every element is selected
that is annotated with (θ0, true), (2) a model has to be determined
that has the most commonality w.r.t. all variant-specific models
of the initial version, where potentially alternatives exist to be
chosen from, or (3) we provide a core configuration Fθ0pcore . In case
(1), the resulting model may not be a valid variant-specific model,
i.e., to correspond to a variant, further elements have to be selected.
For case (2), an extra analysis is required to determine the most
common core model, where further user interaction is necessary
to select from potential alternatives. In case (3), mcore is explicitly
derivable from the 175% model due to Fθ0pcore . In this paper, we apply
case (3) to realize a semi-automated transformation as we require a
valid model mcore and want to keep the transformation effort low.

In addition, as a 175% model comprises all elements contained in
at least one variant-specific model of an SPL version, we determine,
for each element individually, how it is captured for the resulting
DMH

hist in terms of evolution and change operations. To this end,
we obtain a very fine-grained DMH

hist as each delta only comprises
one change operation. In future work, we will apply delta-oriented
refactorings [36] to further improve the granularity, the readability
as well as the analyzability of the resulting DMH

hist.
In the following, we describe the semi-automated transformation

shown in Alg. 2. Based on a 175% model (M175,α175) and a confi-
guration Fθ0pcore for the core of the initial θ0, we analyze for every
element e ∈ EM175 in the 175% model their annotations α175(e,ψ (e))
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Algorithm 2: Transformation (M175,α175) to DMH
hist

1 forall e ∈ EM175 do
2 lastAnno = (⊥θ , ⊥φ );
3 forall θ ∈ Θ do
4 if (θ, φθe ) ∈ α175(e, {θ }) then
5 if θ = θ0 then
6 if φθe = true then
7 addElement(e, mcore);

8 else if Fθ0pcore satisfies φθe then
9 addElement(e, mcore);

10 addDelta(θ, rem, e, ¬φθe );
11 else
12 addDelta(θ, add, e, φθe );

13 else
14 if lastAnno = (⊥θ , ⊥φ ) ∧ δe < DMHhist then
15 addDelta(θ, add, e, φθe );
16 else if lastAnno = (⊥θ , ⊥φ ) ∧ δe ∈ DMHhist then
17 addDelta(θ, δe , φθe );
18 else if lastAnno , (θ, φθe ) then
19 remDelta(θ, δe );
20 addDelta(θ, add, e, φθe );

21 lastAnno = (θ, φθe );
22 else if (θ, φe ) < α175(e, {θ }) ∧ lastAnno , (⊥θ , ⊥φ ) then
23 if δe ∈ DMHhist then
24 remDelta(θ, δe );
25 else
26 addDelta(θ, rem, e, true);

27 lastAnno = (⊥θ , ⊥φ );

to determine evolution and change operations for the resulting
DMH

hist. To identify changes of the annotation between subsequent
versions of an element, we record analyzed annotations in the vari-
able lastAnno to enable the comparison. The annotation (⊥θ ,⊥φ )

denotes that no annotation for the last element version exists.
For each element e , we iterate over all versions θ ∈ Θ incorpora-

ted in the 175% model to ensure the detection of potential changes
of e to be captured in (higher-order) deltas (cf. l. 3ff). Hence, we
check if the element is annotated or not for the current version θ .
For an existing annotation (θ ,φθe ), we further examine if the version
corresponds to the initial version θ0 (cf. l. 5). We focus explicitly on
θ0, as from this version, we determine mcore used as basis to derive
deltas. Elements that have a feature annotation defined as true or
their annotation φθe is satisfied by the given configuration Fθ0pcore are
added to mcore. In the latter case, a delta δe is created capturing a
remove change operation of the element and is also attached to the
initial higher-order delta δHθ=θ0 , where the application condition of
δe is defined by the negated feature annotation ¬φθe (cf. l. 10), i.e.,
the delta removes the element from mcore if Fθ0p satisfies ¬φθe . For
elements that are not contained in the core, we similarly create and
attach deltas δe adding the element to a model if Fθ0p satisfies φθe .

For the remaining annotations (θ ,φθe ) of an element e , we check if
(1) e has no last annotation and is not yet contained inDMH

hist (cf. l. 14),
(2) e has no last annotation but is already part of DMH

hist based on
a δe (cf. l. 16), or (3) there exists a last annotation of the prior ver-
sion but it differs compared to the current one (cf. l. 18). For case
(1), we create a δe that adds the element as it is contained in a
variant-specific model for the first time in the current version. In
case (2), the δe of element e was removed in a prior version, but
is now added again via a higher-order delta δHθ , where further the

Higher-Order Delta Model

175% Model

150% ModelsDelta Models

Variants

Transformation

Figure 4: Equivalence of (M175,α175) and DMH
hist

application condition is set to φθe . For case (3), we simply remove
the old δe and add a new δ ′e with updated application condition.

If an element is not annotated in the θ to be analyzed but was
annotated in the former version (cf. l. 22ff), we check if a delta for
the element exists in DMH

hist or not. For elements that are added
via δe but have to be removed from θ , we remove their δe with a
removal evolution operation. For a core element with φe = true ,
we realize a workaround as there is no delta δe < DMH

hist which is
removed to ensure that the element is not contained in a variant-
specific model derivable in the current version. Hence, we add to
δHθ a new delta δe removing the core element for every valid feature
configuration, i.e., we define the application condition as true .

In the end, we obtain an equivalent higher-order delta model
DMH

hist, where all versions of variants derivable from the input 175%
model are generatable by transforming mcore. Based on DMH

hist,
we are able to apply incremental analyses, e.g., change impact
analysis for supporting regression testing of evolving SPLs when
the evolution is documented by a 175% model.

Example 4.2. By applying Alg. 2 on (M175,α175) from Ex. 3.1, we
obtain DMH

hist shown in Fig. 2 and described in Ex. 2.2. In contrast
to Ex. 2.2, the transformation results in deltas only comprising
one change operation each, where further the derived application
conditions may differ to the application conditions defined in Fig. 2.

5 SOUNDNESS OF TRANSFORMATIONS
We reason about the soundness of the proposed transformations in
Alg. 1 and Alg. 2 w.r.t. the equivalence of the input model to the
resulting output model as shown in Fig. 4. A higher-order delta
model is equivalent to a 175% model and vice versa if for all versi-
ons θi ∈ Θ and configurations Fθipj , the same variant-specific model
versions are derived. To prove the soundness, we use complete
induction and show that the application of the specified transfor-
mation rules result in an output model allowing for the derivation
of the same variant-specific models w.r.t. the input model. The base
case is defined by the transformation of the initial version resulting
in a standard delta model or 150% model, respectively, from which
the same variant-specific models are derivable. The inductive step
shows that the application of the transformation rules again result
in version-specific delta or 150% models. We discuss a proof sketch
for both directions, whereas the complete proof for the transforma-
tion of DMH

hist to (M175,α175) is defined by Nahrendorf [28].
Algorithm 1. To obtain a 175% model, we first integrate mcore

of the DMH
hist and then incorporate the initial higher-order delta

δH0 . At this point, elements that are common for all variant-specific
models of the initial version are annotated with (θ0, true), whereas
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elements (1) to be added (add e) are annotated with φδe of delta δe ,
i.e., they are selected for a model for the same condition as added
via the delta, or (2) to be removed (rem e) are annotated with the
negated application condition. Hence, the base case holds as both
models allow for the derivation of the same models for θ0.

For the inductive step, i.e., the integration of the remaining θi
defined by δHi , we examine the results of the transformation rules.
New elements are added to the model and annotated with φδe simi-
larly as for θ0. The same holds for elements that are removed via a
newly added delta. If the application condition of a delta is changed,
the annotation of the respective element for the current version θi
is also changed such that the element is selected for a model for
the same feature configurations as the delta would be applied in
the delta model of θi . The removal of a delta capturing a remove
change operation implies that an element is less restricted to be
contained in a model and, thus, Alg.1 does the same by removing
the application condition of the delta from the feature annotation
such that the annotation for the θi is also less restricted. If the delta
adding an element is removed via δHi and there is no other delta
adding the element as described in Sect. 3, the element is not con-
tained in a model of θi and, thus, does not get an annotation tuple
for θi in the 175% model. To this end, as the element annotations
for each version in the 175% model correspond to the application
condition of the respective deltas in the higher-order delta model,
both models allow for the derivation of the same models for θi .

Algorithm 2. To obtain a higher-order delta model, Alg. 2 deri-
ves mcore from version θ0 based on the given Fθ0pcore . In addition, the
initial δH0 is determined, where deltas are added capturing either
(1) a removal if the element is annotated such that φθ0e , true but
Fθ0pcore satisfies φ

θ0
e , or (2) capturing an addition if the element is not

part of the core. Hence, the base case holds as both models allow
for the derivation of the same variant-specific models for θ0.

For the inductive step and, thus, for the remaining θi , Alg. 2 takes
into account (1) if an annotation (θi ,φ

θi
e ) exists or not, (2) how it

may change compared to its prior annotation, and (3) if the element
is already integrated in the DMH

hist to be created. Depending on
those checks and further sub-cases to be checked, deltas capturing a
change operation (add e, rem e) are added or removed via δHi . As we
examine each element individually for each θi , the transformation
rules are sufficient to detect every change of elements in the input
175% model and to capture them in the output higher-order delta
model. The special case, i.e., an core element is not contained in a θi ,
is handled via a newly added delta removing the element for every
feature configuration, i.e., φθie = true . To this end, the application
conditions of the deltas that are version-specific added/removed
in the resulting DMH

hist correspond to the combined version and
feature annotations of all elements in the 175% model and, hence,
both models allow for the derivation of the same models for θi .

6 RELATEDWORK
We discuss related work w.r.t. SPL evolution modeling. We further
refer to Botterweck and Pleuss [6] and Montalvillo and Díaz [27]
for an overview on SPL evolution. For an overview about SPL
reengineering, where our proposed transformations belong to, we
refer to Fenske et al. [12]. SPL evolution has been investigated with

a focus on various domain artifacts, e.g., requirements, features,
source code etc. [4–6, 27]. Svahnberg and Bosch [39] proposed a
general categorization of SPL evolution and guidelines to deal with
it based on the examination of two industrial case studies.

In literature, SPL evolution is mainly tackled with feature mo-
dels [7, 14, 31, 32, 37]. Gamez et al. [14] use cardinality-based feature
models to capture and reason about evolution, whereas Bürdek et
al. [7] apply model differencing. In contrast, Pleuss et al. [32] with
EvoFM, Seidl et al. [37] with hyper feature models, and Nieke et
al. [31] with temporal feature models propose extended feature
models to capture the variability and the evolution by the same for-
malism. Compared to 175% modeling, those approaches only focus
on feature models and are not adaptable for SPL domain artifacts.

SPL evolution is also tackled by adopting existing variability
modeling techniques as, e.g., delta modeling [11, 15, 22, 24, 38] or
aspect-oriented programming [2, 3, 13]. Haber et al. [15] inves-
tigate the evolution of delta-oriented architectures based on the
specification of change operations w.r.t. the delta set. In contrast,
Seidl et al. [38] and Lity et al. [24] present a generic extension of
delta modeling [9]. Seidl et al. [38] define two types of deltas, i.e.,
configuration and evolution deltas, and apply both types on the
same modeling level, whereas Lity et al. [24] specify the evolu-
tion of delta models via higher-order deltas (cf. Sect. 2). Compared
to our formalism, those approaches capture the evolution on a
transformative and not on an annotative basis. Nevertheless, our
transformation described in Sect. 4 is extendable to also cope with
other delta modeling adaptations. Lima et al. [22] and Dhungana et
al. [11] apply deltas to determine differences between SPL versions
and use this information to detect and resolve potential evolution
conflicts. Both approaches do not build on a modeling formalism
coping with variability and evolution by the same means like our
novel formalism does. Apel et al. [3] combine feature- and aspect-
oriented programming to exploit the respective benefits to support
SPL evolution using FeatureC++ as example. Alves et al. [2] and Fi-
gueirdo et al. [13] apply aspects to allow for the evolution of the SPL
code base. Compared to our approach, the three approaches focus
on source code and are hard to adapt for other domain artifacts.

Neves et al. [29] introduce templates for safe SPL evolution. The
template application guarantees that applied evolution operati-
ons do not influence the behavior of existing variants other than
intended. Compared to our technique, the approach provides no
evolution-aware variability modeling formalism.

SPL evolution can be further supported using traceability me-
chanisms between domain artifacts [1]. In contrast to our approach,
Ajila and Kaba [1] abstract from an explicit specification of evolu-
tion steps w.r.t. combined version and feature annotations.

Comprehensive tool support for SPL evolution coping with
feature model as well as artifact evolution is provided by Dar-
winSPL [30], DeltaEcore [38], and SPLEmma [34]. We are currently
working on the tool support for 175% modeling and plan to also
incorporate temporal feature models [31] for handling the feature
model evolution similar to DarwinSPL.

7 CONCLUSION
We proposed 175% modeling as an annotative modeling formalism
to capture the evolution and variability of evolving SPLs by the
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same means. Hence, we merge all variant-specific models of all SPL
versions into one model, where elements are mapped to combined
version and feature annotations to specify in which variant-specific
model version the element is contained. We discussed benefits,
limitations, and potential application scenarios enabling evolution-
aware family-based analyses. In addition, we provided a bidirectio-
nal transformation between 175% and higher-order delta models
and show its soundness.

As future work, we plan to combine 175% modeling with tem-
poral feature modeling [31] to provide a sophisticated formalism
tackling feature model and domain artifact evolution. We want to
evaluate the applicability of our formalism by capturing and do-
cumenting the evolution history of existing SPLs. We also plan to
instantiate our formalism for different artifact types to examine its
limitations and benefits in a wider context and investigate further
application scenarios. As a last step, we will extend our transforma-
tion from 175% models into higher-order delta models by incorpo-
rating delta-oriented refactorings [36] to improve the granularity
of the resulting higher-order delta model.
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