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Abstract. Correctness-by-Construction (CbC) is an approach to incre-
mentally create formally correct programs guided by pre- and postcon-
dition specifications. A program is created using refinement rules that
guarantee the resulting implementation is correct with respect to the
specification. Although CbC is supposed to lead to code with a low de-
fect rate, it is not prevalent, especially because appropriate tool support
is missing. To promote CbC, we provide tool support for CbC-based
program development. We present CorC, a graphical and textual IDE
to create programs in a simple while-language following the CbC ap-
proach. Starting with a specification, our open source tool supports CbC
developers in refining a program by a sequence of refinement steps and
in verifying the correctness of these refinement steps using the theorem
prover KeY. We evaluated the tool with a set of standard examples on
CbC where we reveal errors in the provided specification. The evalua-
tion shows that our tool reduces the verification time in comparison to
post-hoc verification.

1 Introduction

Correctness-by-Construction (CbC) [12, 13, 19, 23] is a methodology to construct
formally correct programs guided by a specification. CbC can improve program
development because every part of the program is designed to meet the corre-
sponding specification. With the CbC approach, source code is incrementally
constructed with a low defect rate [19] mainly based on three reasons. First,
introducing defects is hard because of the structured reasoning discipline that is
enforced by the refinement rules. Second, if defects occur, they can be tracked
through the refinement structure of specifications. Third, the trust in the pro-
gram is increased because the program is developed following a formal pro-
cess [14].

Despite these benefits, CbC is still not prevalent and not applied for large-
scale program development. We argue that one reason for this is missing tool
support for a CbC-style development process. Another issue is that the program-
mer mindset is often tailored to the prevalent post-hoc verification approach.



CbC has been shown to be beneficial even in domains where post-hoc verifica-
tion is required [29]. In post-hoc verification, a method is verified against pre-
and postconditions. In the CbC approach, we refine the method stepwise, and
we can check the method partially after each step since every statement is sur-
rounded by a pair of pre- and postconditions. The verification of refinement
steps and Hoare triples reduces the proof complexity since the proof task is split
into smaller problems. The specifications and code developed using the CbC ap-
proach can be used to bootstrap the post-hoc verification process and allow for
an easier post-hoc verification as the method constructed using CbC generally
is of a structure that is more amenable to verification [29].

In this paper, we present CorC,5 a tool designed to develop programs follow-
ing the CbC approach. We deliberately built our tool on the well-known post-hoc
verifier KeY [4] to profit from the KeY ecosystem and future extensions of the
verifier. We also add CbC as another application area to KeY, which opens the
possibility for KeY users to adopt the CbC approach. This could spread the
constructive CbC approach to areas where post-hoc verification is prevalent.

Our tool CorC offers a hybrid textual-graphical editor to develop programs
using CbC. The textual editor resembles a normal programming editor, but
is enriched with support for pre- and postcondition specifications. The graphi-
cal editor visualizes the code, its specification, and the program refinements in
a tree-like structure. The developers can switch back and forth between both
views. In order to support the correct application of the refinement rules, the
tool is integrated with KeY [4] such that proof obligations can be immediately
discharged during program development. In a preliminary evaluation, we found
benefits of CorC compared to paper-and-pencil-based application of CbC and
compared to post-hoc verification.

2 Foundations of Correctness-by-Construction

Classically, CbC [19] starts with the specification of a program as a Hoare triple
comprising a precondition, an abstract statement, and a postcondition. Such a
triple, say T , should be read as a total correctness assertion: if T is in a state
where the precondition holds and its abstract statement is executed, then the
execution will terminate and the postcondition will hold. T will be true for a
certain set of concrete program instantiations of the abstract program and false
for other instantiations. A refinement of T is a triple, say T ′, which is true for a
subset of concrete programs that render T to be true.

In our work, pre-/post-condition specifications for programs are written in
first-order logic (FOL). A formula in FOL consists of atomic formulas which
are logically connected. An atomic formula is a predicate which evaluates to
true or false. Programs in this work are written in the CorC language, which is
inspired by the Guarded Command Language (GCL) [11] and presented below.

5 https://github.com/TUBS-ISF/CorC, CorC is an acronym for Correctness-by-
Construction
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{P} S {Q} can be refined to

1 . Skip : {P} skip {Q} iff P implies Q

2 . Assignment : {P} x := E {Q} iff P implies Q[x := E]

3 . Composition : {P} S1 ; S2 {Q} iff there is an intermediate condition M

such that {P} S1 {M} and {M} S2 {Q}
4 . Selection : {P} if G1 → S1 elseif . . . Gn → Sn fi {Q} iff (P implies

G1 ∨ G2 ∨ . . . ∨ Gn) and {P ∧ Gi} Si {Q} holds for all i.

5 . Repetition : {P} do [I, V] G→ S od {Q} iff (P implies I) and (I ∧ ¬G implies

Q) and {I ∧ G} S {I} and {I ∧ G ∧ V=V0} S {I ∧ 0≤V ∧ V<V0}
6 . Weaken pre : {P′} S {Q} iff P implies P

′

7 . Strengthen post : {P} S {Q′} iff Q
′ implies Q

8 . Subroutine : {P} Sub {Q} with subroutine {P′} Sub {Q′}
iff P is equal to P

′ and Q
′ is equal to Q

Fig. 1. Refinement Rules in CbC [19]

For the concrete instantiation of conditions and assignments, our tool uses a host
language. We decided for Java, but other languages are also possible.

To create programs using CbC, we use refinement rules. A Hoare triple
is refined by applying rules, which introduce CorC language statements, so
that a concrete program is created. The concrete program obtained by refine-
ment is guaranteed to be correct by construction, provided that the correctness-
preserving refinement steps have been accurately applied. In Figure 1, we present
the statements and refinement rules used in CbC and our tool.

Skip. A skip or empty statement is a statement that does not alter the state
of the program (i.e., it does nothing) [11, 19]. This means a Hoare triple with a
skip statement evaluates to true if the precondition implies the postcondition.

Assignment. An assignment statement assigns an expression of type T to
a variable, also of type T. In the tool, we use a Java-like assignment (x = y).
To refine a Hoare triple {P} S {Q} with an assignment statement, the assign-
ment rule is used. This rule replaces the abstract statement S by an assignment
{P} x = E {Q} iff P implies Q[x := E].

Composition. A composition statement is a statement which splits one ab-
stract statement into two. A Hoare triple {P} S {Q} is split to {P} S1 {M} and
{M} S2 {Q} in which S is refined to S1 and S2. M is an intermediate condition
which evaluates to true after S1 and before S2 is executed [11].

Selection. Selection in our CorC language works as a switch statement. It
refines a Hoare triple {P} S {Q} to {P} if G1 → S1 elseif . . . Gn → Sn fi {Q}. The
guards Gi are evaluated, and the sub-statement Si of the first satisfied guard
is executed. We use a switch-like statement so that every sub-statement has an
associated guard for further reasoning. The selection refinement rule can only be
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used if the precondition P implies the disjunction of all guards so that at least
one sub-statement could be executed.

Repetition. The repetition statement {P} do [I, V] G→ S od {Q} works like
a while loop in other languages. If the loop guard G evaluates to true, the associ-
ated loop statement S is executed. The repetition statement is specified with an
invariant I and a variant V. To refine a Hoare triple {P} S {Q} with a repetition
statement, (1) the precondition P has to imply the invariant I of the repetition
statement, (2) the conjunction of invariant and the negation of the loop guard
G have to imply the postcondition Q, and (3) the loop body has to preserve the
invariant by showing that {I ∧ G} S {I} holds. To verify termination, we have to
show that the variant V monotonically decreases in each loop iteration and has
0 as a lower bound.

Weaken precondition. The precondition of a Hoare triple can be weakened if
necessary. The weaken precondition rule replaces the precondition P with a new
one P′ only if P implies P′ [12].

Strengthen postcondition. To strengthen a postcondition, the strengthen post-
condition rule can be used. A postcondition Q is replaced by a new one Q′ only
if Q′ implies Q [12].

Subroutine. A subroutine can be used to split a program into smaller parts.
We use a simple subroutine call where we prohibit side effects and parameters. A
triple {P} S {Q} can be refined to a subroutine {P′} Sub {Q′}, if the precondition
P′ of the subroutine is equal to the precondition P of the refined statement and the
postcondition Q′ of the subroutine is equal to the postcondition Q of the refined
statement. The subroutine can be constructed as a separate CbC program to
verify that it satisfies the specification. The Hoare triple {P′} Sub {Q′} is the
starting point to construct a program using CbC.

3 Correctness-by-Construction by Example

To introduce the programming style of CbC, we demonstrate the construction
of a linear search algorithm using CbC [19]. The linear search problem is defined
as follows: We have an integer array a of some length, and an integer variable
x. We try to find an element in the array a which has the same value as the
variable x, and we return the index i where the (last) element x was found, or
−1 if the element is not in the array.

To construct the algorithm, we start with concretizing the pre- and postcon-
dition of the algorithm. Before the algorithm is executed, we know that we have
an integer array. Therefore, we specify a6=null ∧ a.length≥0 as precondition P.
The postcondition forces that if the index i is greater than or equal to zero, the
element is found on the returned index i (Q := (i≥0 =⇒ a[i]=x)).

Our algorithm traverses the array in reverse order and checks for each index
whether the value is equal to x. In this case, the index is returned. To create
this algorithm, we construct an invariant I for the loop:

I := ¬appears(a, x, i + 1, a.length) ∧ i≥−1 ∧ i<a.length
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{P} st {Q}

{P} st1 {I} ∧ {I} st2 {Q}

{P} i = a.length− 1 {I} {I} do [I, V] G→ loopSt od {Q}

{I ∧ G} i = i− 1 {I}

1© composition for st

2© assignment for st1

3© repetition for st2

4© assignment for loopSt

Fig. 2. Refinement steps for the linear search algorithm

The invariant is used to split the array into two parts. A part from i + 1 to
a.length where x is not contained, and a part from zero to i which is not
checked yet. In every iteration, the next index of the array is checked. The
predicate appears(a, x, l, h) asserts that x occurs in array a inside the range
from l (included) to h (excluded). The predicate can be translated to FOL as
∃i : (i≥l ∧ i<h ∧ a[i]=x).

We can use the CbC refinement rules to implement linear search. The re-
finement steps for the example are shown in Figure 2 and numbered from 1© to
4©. To create a loop in the program, we need to initialize a loop counter vari-
able to establish the invariant. Therefore, we split the program by introducing a
composition statement ( 1© in Figure 2). The invariant I is used as intermediate
condition (i.e., M := I), because it has to be true after the initialization, and be-
fore the first loop step. The statement st1 is refined to an assignment statement
2©. We initialize i with a.length− 1 to start at the end of the array. This assign-
ment satisfies the intermediate condition I where i is replaced by a.length− 1.
The range of appears is empty, and therefore the predicate evaluates to true.
To refine the second statement (st2), we use the repetition refinement rule 3©.
As long as x is not found, we iterate through the array. As guard of the repe-
tition, we use (i≥0 ∧ a[i]6=x). The invariant of the repetition is the invariant I

introduced above. The variant V is i + 1. To verify that this refinement is valid,
we have to verify that the precondition of the repetition statement implies the
invariant, and that the invariant and the negated guard imply the postcondition
of the repetition (cf. Rule 5). Both are valid because the precondition is equal
to the invariant and the postcondition of the repetition statement (in this case
it is Q) is equal to the negated guard. The last step is to refine the abstract loop
statement (loopSt) 4©. We use an assignment to decrease i and get the final
program. We can verify that the invariant holds after each loop iteration. The
program terminates because the variant decreases in every step and it is always
greater than or equal to zero.
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4 Tool Support in CorC

CorC extends KeY’s application area by enabling CbC to spread the constructive
engineering to areas where post-hoc verification is prevalent. KeY programmers
can use both approaches to construct formally correct programs. By using CorC,
they develop specification and code that can bootstrap the post-hoc verification.
The CorC tool6 is realized as an Eclipse plug-in in Java. We use the Eclipse
Modeling Framework (EMF)7 to specify a CbC meta model. This meta model
is used by two editor views, a textual and a graphical editor. The Hoare triple
verification is implemented by the deductive program verification tool KeY [4].
In the following list, we summarize the features of CorC.

– Programs are written as Hoare triple specifications, including pre-/postcondi-
tion specifications and abstract statements or assignment/skip statements in
concrete triples.

– CorC has eight rules to construct programs: skip, assignment, composition,
selection, repetition, weakening precondition, strengthening postcondition,
and subroutine (cf. Section 2).

– Pre-/postconditions and invariant specification are automatically propagated
through the program.

– CorC comprises a graphical and a textual editor that can be used inter-
changeably.

– Up to now, CorC supports integers, chars, strings, arrays, and subroutine
calls without side effects, I/O, and library calls.

– Hoare triples are typically verified by KeY automatically. If the proof cannot
be closed automatically, the user can interact with KeY.

– Helper methods written in Java 1.5 can be used in a specification.
– CorC comprises content assist and an automatic generation of intermediate

conditions.

4.1 Graphical Editor

The graphical editor represents CbC-based program refinement by a tree struc-
ture. A node represents the Hoare triple of a specific CorC language statement.
Figure 3 presents the linear search algorithm of Section 3 in the graphical edi-
tor. The structure of the tree is the same as in Figure 2. The additional nodes
on the right specify used program variables including their type and global in-
variant conditions. The global invariant conditions are added to every pre- and
postcondition of Hoare triples to simplify the construction of the program. In
the example, we specify the array a and the range of variable i to support the
verification, as KeY requires this range to be explicit for verification.

The root node of the tree shows the abstract Hoare triple for the overall
program with a symbolic name for the abstract statement. In every node, the

6 https://github.com/TUBS-ISF/CorC
7 https://eclipse.org/emf/
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Fig. 3. Linear search example in the graphical editor

pre- and postcondition are specified on the left and right of the node under the
corresponding header. A composition statement node, the second statement of
the tree, contains the pre- and postcondition and additionally defines an inter-
mediate condition. The intermediate condition is the middle term in the bottom
line. Both abstract sub-statements of the composition have a symbolic name and
can be further refined by adding a connection to another node (i.e., creating a
parent-child relation). The repetition node contains fields to specify the invari-
ant, the guard and the variant of the repetition. These fields are in the middle
row. The pre- and postcondition are associated to the inner loop statement. An
assignment node (cf. both leaf nodes of the figure) contains the precondition,
the assignment, and the postcondition. The representations of the nodes for the
refinements not illustrated in this example are similar.

Refinement steps are represented by edges. The pre- and postconditions are
propagated from parents to their children on drawing the parent/child relation.
We explicitly show the propagated conditions in a node to improve readability.
The propagated conditions from the parent are unmodifiable because refinement
rules determine explicitly how conditions are propagated. An exception are the
rules to weaken the precondition or strengthen the postcondition. Here, the
conditions can be overridden. At the repetition statement, we only depict the
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pre-/postconditions of the inner loop statement to reduce the size of this node.
The pre-/postconditions of the parent node (in our example the composition
statement) are not shown explicitly, but they are propagated internally to verify
that the repetition refinement rule is satisfied. To visualize the verification status,
the nodes have a green border if proven, a red one otherwise.

By showing the Hoare triples explicitly, problems in the program can be lo-
calized. If some leaf node cannot be proven, the user has to check the assignment
and the corresponding pre-/postcondition. If an error occurred, the conditions
on the refinement path up to pre-/postcondition of the starting Hoare triple can
be altered. Other paths do not need to be checked. To prove the program correct,
we have to prove that the refinement is correct. Aside from the side conditions
of refinement rules (cf. iff conditions in refinement rules), only the leaf nodes of
the refinement tree which contain basic Hoare triples with skip or assignment
statements need to be verified by a prover, while all composite statements are
correct by construction of their conditions.

To support the user in developing intermediate conditions for composition
statements, our tool can compute the weakest precondition from a postcondition
and a concrete assignment by using the KeY theorem prover. So, the user can
create a specific assignment statement and generate the intermediate conditions
afterwards. We also support modularization, to cover cases where algorithms
become too large. Sub-algorithms can be created using CbC in other CorC pro-
grams. We introduce a simple subroutine rule which can be used as a leaf node
in the editor. The subroutine has a name and it is connected to a second diagram
with the same name as the subroutine. This subroutine call is similar to a classic
method call. It can be used to decompose larger CbC developments to multiple
smaller programs.

4.2 Textual Editor

The textual editor is an editor for the CorC programming language described
above. The user writes code by using keywords for the specific statements and
enriches the code with conditions, such as invariants or intermediate conditions,
and assignments in our CorC syntax. The syntax of the composed statements in
the textual editor is shown in Figure 4. In the GlobalConditions declaration,
we enumerate the needed global conditions separated with a comma. The used
variables are enumerated after the JavaVariables keyword.

The linear search example program presented in Section 3 is shown in the
syntax of CorC in Listing 1. The program starts with keyword Formula. The pre-
and postcondition of the abstract Hoare triple are written after the pre: and
post: keywords. The abstract statement of the Hoare triple is refined to a com-
position statement in lines 3–16. The statements are surrounded by curly brack-
ets to establish the refinement structure. We have the first statement in lines 4–6,
the intermediate condition in line 7 and the second statement in lines 8–15. The
first statement is refined to an assignment (Line 5). The refinement is done by
introducing an assignment in Java syntax (i = a.length− 1;). The second state-
ment is refined to a repetition statement (cf. the syntax of a repetition statement
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Selection statement Repetition statement

if (“guard”) then {statement} while (“guard”)

elseif (“guard”) then {statement} inv : [“invariant”] var : [“variant”]

. . . do {statement} od

fi

Fig. 4. Syntax of statements in textual editor

1 Formula "linearSearch"

2 pre: {"true"}

3 {

4 {

5 i=a.length -1;

6 }

7 intm: ["! appears(a, x, i+1, a.length )"]

8 {

9 while ("i>=0 & a[i]!=x")

10 inv: ["! appears(a, x, i+1, a.length )"]

11 var: ["i+1"] do

12 {

13 i=i-1;

14 } od

15 }

16 }

17 post: {"i>=0 -> a[i]=x"}

18
19 GlobalConditions

20 conditions {"a!=null", "a.length >=0",

21 "i>=-1", "i<a.length "}

22
23 JavaVariables

24 variables {"int[] a", "int x", "int i"}

Listing 1. Linear search example in the textual editor

in Figure 4). We specify the guard, the invariant, and the variant. Finally, the
single statement of the loop body is refined to an assignment in Line 13.

As in the graphical editor, pre-/postconditions are propagated top-down from
a parent to a child statement. For example, the intermediate condition of a
composition statement which is the postcondition of the first sub-statement and
the precondition of the second, appears only once in the editor (e.g., Line 7). To
support the user, we implemented syntax highlighting and a content assist. When
starting to write a statement, a user may employ auto-completion where the
statements are inserted following the syntax in Figure 4. The user can specify the
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1 \javaSource "src";

2 \include "helper.key";

3 \programVariables {int x;}

4 \problem {

5 (x = 0) -> \<{x=x+1;}\> (x = 1)

6 }

Listing 2. KeY problem file

conditions, then the next statement can be refined. The editor also automatically
checks the syntax and highlights syntax errors. Information markers are used to
indicate statements which are not proven yet. For example, the Hoare triple of
the assignment statement (i = a.length− 1) in Listing 1 has to be verified, and
CorC marks the statement according to the proof completion results.

4.3 Verification of CorC Programs

To prove the refined program is correct, we have to prove side conditions of refine-
ments correct (e.g., prove that an assignment satiesfies the pre-/postcondition
specification). This reduces the proof complexity because the challenge to prove
a complete program is decomposed into smaller verification tasks. The inter-
mediate Hoare triples are verified indirectly through the soundness of the re-
finement rules and the propagation of the specifications from parent nodes to
child nodes [19]. Side conditions occur in all refinements (cf. iff conditions in
refinement rules). These side conditions, such as the termination of repetition
statements or that at least one guard in a selection has to evaluate to true, are
proven in separate KeY files.

For the proof of concrete Hoare triples, we use the deductive program verifier
KeY [4]. Hoare triples are transformed to KeY’s dynamic logic syntax. The syn-
tax of KeY problem files is shown in Listing 2. Using the keyword javaSource,
we specify the path to Java helper methods which are called in the specifi-
cations. These methods have to be verified independently with KeY. A KeY
helper file, where the users can define their own FOL predicates for the specifi-
cation, is included with the keyword include. For example, in CorC a predicate
appears(a, x, l, h) (cf. the linear search example) can be used which is specified
in the helper file as a FOL formula. The variables used in the program are listed
after the keyword programVariables. After problem, we define the Hoare triple
to be proven, which is translated to dynamic logic as used by KeY. KeY problem
files are verified by KeY. As we are only verifying simple Hoare triples with skip
or assignment statements, KeY is usually able to close the proofs automatically
if the Hoare triple is valid.

To verify total correctness of the program, we have to prove that all repe-
tition statements terminate. The termination of repetition statements is shown
by proving that the variants in the program monotonically decrease and are
bounded. Without loss of generality, we assume this bound to equal 0, as this
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is what KeY requires. This is done by specifying the problem in the KeY
file in the following way: (invariant & guard) -> {var0:=var} \<{std}\>

(invariant & var<var0 & var>=0). The code of the loop body is specified at
std to verify that after one iteration of the loop body the variant var is smaller
than before but greater than or equal to zero.

To verify Hoare triples in the graphical editor, we implemented a menu entry.
The user can right-click on a statement and start the automatic proof. If the
proof is not closed, the user can interact with the opened KeY interface. To
prove Hoare triples in the textual editor, we automatically generate all needed
problem files for KeY whenever the user saves the editor file. The proof of the
files is started using a menu button. The user gets feedback which triples are
not proven by means of markers in the editor.

4.4 Implementation as Eclipse Plugin

We extended the Eclipse modeling framework with plugins to implement the
two editors. We have created a meta model of the CbC language to represent
the required constructs (i.e., statements with specification). The statements can
be nested to create the CbC refinement hierarchy. The graphical and the tex-
tual editor are projections on the same meta model. The graphical editor is
implemented using the framework Graphiti.8 It provides functionality to create
nodes and to associate them to domain elements, such as statements and spec-
ifications. The nodes can be added from a palette at the side of the editor, so
no incorrect statement with its associated specification can be created. We im-
plemented editing functionality to change the text in the node; the background
model is changed simultaneously. Graphiti also provides the possibility to update
nodes (e.g., to propagate pre- and postconditions), if we connect those nodes by
refinement edges. The refinement is checked for compliance with the CbC rules.

The textual editor is implemented using XText.9 We created a grammar
covering every statement and the associated specification. If the user writes a
program, the text is parsed and translated to an instance of the meta model. If a
program is created in one editor, a model (an instance of our meta model) of the
program is created in the background. We can easily transform one view into the
other. The transformation is a generation step and not a live synchronization
between both views, but it is carried out invisibly for the user when changing
the views.

In implementing CorC, we considered the exchangeability of the host lan-
guage. The specifications and assignments are saved as strings in the meta
model. They are checked by a parser to comply with Java. This parser could
be exchanged to support a different language. The verification is done by gener-
ating KeY files which are then evaluated by KeY. Here, we have to exchange the
generation of the files if another theorem prover should be integrated. The infor-
mation of the meta model may have to be adopted to fit the needs of the other
prover. We also have to implement a programmatic call to the other prover.

8 https://eclipse.org/graphiti/
9 https://eclipse.org/Xtext/
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Algo-
rithm

#Nodes
in GE

#Lines
in TE

#Lines
with
JML

#Veri-
fied

CorC
triples

CbC
Total
Proof-
Nodes

CbC
Total
Proof-
Time

PhV
Total
Proof-
Nodes

PhV
Total
Proof-
Time

Linear
Search

5 12 10 5/5 285 0.4 s 589 1.2 s

Max. El-
ement

9 21 15 9/9 1023 1.2 s 993 1.8 s

Pattern
Match-
ing

14 23 20 13/13 21131 54.9 s 201619 1479.3 s

Exponen-
tiation

7 21 17 7/7 6588 15.2 s 7303 20.4 s

Log. Ap-
prox.

5 16 12 5/5 13756 42.7 s 18835 68.5 s

Dutch
Flag

8 26 24 8/8 4107 5.7 s 4993 13.4 s

Factorial 5 15 13 4/4 1554 3.6 s 1598 4.4 s

(GE) Grahical Editor, (TE) Textual Editor, (PhV) Post-hoc Verification

Table 1. Evaluation of the example programs

5 Evaluation

The tool support offers new chances to evaluate CbC versus post-hoc verification.
We quantitatively compare the development and verification of programs with
CorC and with post-hoc verification. This is to check the hypothesis that the
verification of algorithms is faster with CorC than with post-hoc verification. We
created the first eight algorithms from the book by Kourie and Watson [19] in our
graphical editor. For comparison purposes, we also wrote each example as a plain
Java program with JML specifications in order to directly verify it with KeY.
The specifications are the same as in CorC. We measured the verification time
and the proof nodes that KeY needed to close the proofs for both approaches.
The results of the evaluation are presented in Table 1(verification time rounded).

The algorithms have 5 to 14 nodes in the graphical editor and 12 to 26 lines
of code in the textual editor. The Java version with a JML specification always
has fewer lines (between 8% and 29% smaller). The additional specifications,
such as the intermediate conditions of composition statements, and the global
invariant conditions and variables cause more lines of code in the CbC program.

The verification of the eight algorithms worked nearly without problems.
We verified 7 out of 8 examples within CorC. In the cases without problems,
every Hoare triple and the termination of the loops could be proven. We had
to prove fewer Hoare triples than nodes in the editor, as not every node has
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Fig. 5. Proof time of CbC and post-hoc verification in logarithmic scale

to be proven separately. Composition nodes are proven indirectly through the
refinement structure. For exponentiation, logarithm, and factorial, we had to im-
plement recursive helper methods which are used in the specification. Therefore,
the programs impose upper bounds for integers to shorten the proof. The binary
search algorithm could not be verified automatically in KeY using post-hoc ver-
ification or CorC. In each step, when the element is not found, the algorithm
halves the array. KeY could not prove that the searched element is in the new
boundaries because verification problems with arithmetic division are hard to
prove for KeY automatically.

In the case of measured proof nodes, maximum element needs slightly fewer
nodes proved with post-hoc verification than with CbC. In the other cases, the
proofs for the algorithms constructed with CbC are 3% to 854% smaller. The
largest difference was measured for the pattern matching algorithm. The proof
is reduced to a ninth of the nodes.

The verification time is visualized in Figure 5. The time is measured in mil-
liseconds and scaled logarithmically. The proofs for the CbC approach are always
faster showing lower proof complexity. For maximum element, exponentiation,
logarithm and factorial, the post-hoc verification time requires between 22% and
60% more time. The difference increases for Dutch flag and linear search to 137%
and 176%, respectively. Algorithm pattern matching has the biggest difference.
Here, the CbC approach needs nearly a minute, but the post-hoc approach needs
over 24 minutes. To verify our hypothesis, we apply the non-parametric paired
Wilcoxon-Test [30] with a significance level of 5%. We can reject the null hypoth-
esis that CbC verification and post-hoc verification have no significant difference
in verification time (p-value = 0.007813). This rejection of the null hypothesis
in an empirical evidence for our hypothesis that verification is faster with CorC
than with post-hoc verification.
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With our tool support, we were able to compare the CbC approach with post-
hoc verification. For our examples, we evaluated that the verification effort is
reduced significantly which indicates a reduced proof complexity. It is worthwhile
to further investigate the CbC approach, also to profit from synergistic effects
in combination with post-hoc verification. As we built CorC on top of KeY, the
post-hoc verification of programs constructed with CorC is feasible.

An advantage of CorC is the overview on all Hoare triples during develop-
ment. In this way, we found some specifications where descriptions in the book
by Kourie and Watson [19] were not precise enough to verify the problem in
KeY. For example, in the pattern matching algorithm, we had to verify two
nested loops. At one point, we had to verify that the invariant of the inner loop
implies the invariant of the outer loop. This was not possible, so we extended the
invariant of the inner loop to be the conjunction of both invariants. In the book
of Kourie and Watson [19], this conjunction of both invariants was not explicitly
used.

6 Related Work

We compare CorC to other programming languages and tools using specification
or refinements. The programming language Eiffel is an object-oriented program-
ming language with a focus on design-by-contract [21, 22]. Classes and methods
are annotated with pre-/postconditions and invariants. Programs written in Eif-
fel can be verified using AutoProof [18, 28]. The verification tool translates the
program with assertions to a logic formula. An SMT-solver proves the correct-
ness and returns the result. Spec# is a similar tool for specifying C# programs
with pre-/postcondition contracts. These programs can be verified using Boogie.
The code and specification is translated to an intermediate language (BoogiePL)
and verified [5, 6]. VCC [8] is a tool to annotate and verify C code. For this pur-
pose, it reuses the Spec# tool chain. VeriFast [16] is another tool to verify C
and Java programs with the help of contracts. The contracts are written in sep-
aration logic (a variant of Hoare logic). As in Eiffel, the focus of Spec#, VCC,
and VeriFast is on post-hoc verification and debugging failed proof attempts.

The Event-B framework [2] is a related CbC approach. Automata-based sys-
tems including a specification are refined to a concrete implementation. Ate-
lier B [1] implements the B method by providing an automatic and interactive
prover. Rodin [3] is another tool implementing the Event-B method. The main
difference to CorC is that CorC works on code and specifications rather than on
automata-based systems.

ArcAngel [25] is a tool supporting Morgan’s refinement calculus. Rules are
applied to an initial specification to produce a correct implementation. The tool
implements a tactic language for refinements to apply a sequence of rules. In
comparison to our tool, ArcAngel does not offer a graphical editor to visualize
the refinement steps. Another difference is that ArcAngel creates a list of proof
obligations which have to be proven separately. CRefine [26] is a related tool for
the Circus refinement calculus, a calculus for state-rich reactive systems. Like
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our tool, CRefine provides a GUI for the refinement process. The difference is
that we specify and implement source code, but they use a state-based language.
ArcAngelC [10] is an extension to CRefine which adds refinement tactics.

The tools iContract [20] and OpenJML [9] apply design-by-contract. They
use a special comment tag to insert conditions into Java code. These conditions
are translated to assertions and checked at runtime which is a difference to our
tool because no formal verification is done. DBC-Python is a similar approach
for the Python language which also checks assertions at runtime [27].

To verify the CbC program, we need a theorem prover for Hoare triples,
such as KeY [4]. There are other theorem provers which could be used (e.g.,
Coq [7] or Isabelle/HOL [24]). The Tecton Proof System [17] is a related tool
to structure and interactively prove Hoare logic specification. The proofs are
represented graphically as a set of linked trees. These interactive provers do not
fit our needs because we want to automate the verification process. KeY provides
a symbolic execution debugger (SED) that represents all execution paths with
specifications of the code to the verification [15]. This visualization is similar to
our tree representation of the graphical editor. The SED can be used to debug
a program if an error occur during the post-hoc verification process.

7 Conclusion and Future Work

We implemented CorC to support the Correctness-by-Construction process of
program development. We created a textual and a graphical editor that can be
used interchangeably to enable different styles of CbC-based program develop-
ment. The program and its specification are written in one of the editors and
can be verified using KeY. This reduces the proof complexity with respect to
post-hoc verification. We extended the KeY ecosystem with CorC. CorC opens
the possibility to utilize CbC in areas where post-hoc verification is used as pro-
grammers could benefit from synergistic effects of both approaches. With tool
support, CbC can be studied in experiments to determine the value of using
CbC in industry.

For future work, we want to extend the tool support, and we want to evaluate
empirically the benefits and drawbacks of CorC. To extend the expressiveness,
we implement a rule for methods to use method calls in CorC. These methods
have to be verified independently by CorC/KeY. We could investigate whether
the method call rules of KeY can be used for our CbC approach. Another future
work is the inference of conditions to reduce the manual effort. Postconditions
can be generated automatically for known statements by using the strongest
postcondition calculus. Invariants could be generated by incorporating external
tools. As mentioned earlier, other host languages and other theorem provers can
be integrated in our IDE.

The second work package for future work comprise the evaluation with a
user study. We could compare the effort of creating and verifying algorithms
with post-hoc verification and with our tool support. The feedback can be used
to improve the usability of the tool.
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